A193056 Reciprocals are the complement to logarithm of Riemann zeta. a(1)=0, for n>1: a(n) = A008683(n) + A100995(n).
0, 0, 0, 2, 0, 1, 0, 3, 2, 1, 0, 0, 0, 1, 1, 4, 0, 0, 0, 0, 1, 1, 0, 0, 2, 1, 3, 0, 0, -1, 0, 5, 1, 1, 1, 0, 0, 1, 1, 0, 0, -1, 0, 0, 0, 1, 0, 0, 2, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 6, 1, -1, 0, 0, 1, -1, 0, 0, 0, 1, 0, 0, 1, -1, 0, 0, 4, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, -1, 0, 0, -1, 1, 0, 0, 0, -1, 1, 0, 0, -1, 1, 0, 0, 1, 1, 0
Offset: 1
Keywords
Examples
The reciprocals of this sequence, defined by the Dirichlet series generating function are: 0/1,0/1,0/1,1/2,0/1,1/1,0/1,1/3,1/2,1/1, 0/1,0/1...
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
a100995[n_]:=If[PrimePowerQ[n], FactorInteger[n][[1, 2]], 0] (* From Harvey P. Dale *); Table[If[n==1, 0, MoebiusMu[n] + a100995[n]], {n, 100}] (* Indranil Ghosh, May 27 2017 *)
-
PARI
A193056(n) = if(1==n,0,moebius(n)+isprimepower(n)); \\ Antti Karttunen, May 27 2017
Formula
Dirichlet series generating function of reciprocals: -0/1*(Zeta(s)-1)^1 + 1/2*(Zeta(s)-1)^2 - 2/3*(Zeta(s)-1)^3 + 3/4*(Zeta(s)-1)^4 - ...
Extensions
Data section extended to 120 terms by Antti Karttunen, May 27 2017
Comments