cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A193056 Reciprocals are the complement to logarithm of Riemann zeta. a(1)=0, for n>1: a(n) = A008683(n) + A100995(n).

Original entry on oeis.org

0, 0, 0, 2, 0, 1, 0, 3, 2, 1, 0, 0, 0, 1, 1, 4, 0, 0, 0, 0, 1, 1, 0, 0, 2, 1, 3, 0, 0, -1, 0, 5, 1, 1, 1, 0, 0, 1, 1, 0, 0, -1, 0, 0, 0, 1, 0, 0, 2, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 6, 1, -1, 0, 0, 1, -1, 0, 0, 0, 1, 0, 0, 1, -1, 0, 0, 4, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, -1, 0, 0, -1, 1, 0, 0, 0, -1, 1, 0, 0, -1, 1, 0, 0, 1, 1, 0
Offset: 1

Views

Author

Mats Granvik, Jul 15 2011

Keywords

Comments

The characteristic function of primes can be computed as: A010051(n) = A100995(n) - sqrt(A100995(n)*a(n)). But the element-wise multiplication of the sequences inside the sqrt, has no known operation or definition in terms of Dirichlet generating functions.

Examples

			The reciprocals of this sequence, defined by the Dirichlet series generating function are: 0/1,0/1,0/1,1/2,0/1,1/1,0/1,1/3,1/2,1/1, 0/1,0/1...
		

Crossrefs

Programs

  • Mathematica
    a100995[n_]:=If[PrimePowerQ[n], FactorInteger[n][[1, 2]], 0] (* From Harvey P. Dale *); Table[If[n==1, 0, MoebiusMu[n] + a100995[n]], {n, 100}] (* Indranil Ghosh, May 27 2017 *)
  • PARI
    A193056(n) = if(1==n,0,moebius(n)+isprimepower(n)); \\ Antti Karttunen, May 27 2017

Formula

a(1)=0, for n > 1: a(n) = A008683(n) + A100995(n).
Dirichlet series generating function of reciprocals: -0/1*(Zeta(s)-1)^1 + 1/2*(Zeta(s)-1)^2 - 2/3*(Zeta(s)-1)^3 + 3/4*(Zeta(s)-1)^4 - ...
Reciprocals of a(n) = first column in the sum of matrix powers: -0/1*A175992^1 + 1/2*A175992^2 - 2/3*A175992^3 + 3/4*A175992^4...

Extensions

Data section extended to 120 terms by Antti Karttunen, May 27 2017