A193091 Augmentation of the triangular array A158405. See Comments.
1, 1, 3, 1, 6, 14, 1, 9, 37, 79, 1, 12, 69, 242, 494, 1, 15, 110, 516, 1658, 3294, 1, 18, 160, 928, 3870, 11764, 22952, 1, 21, 219, 1505, 7589, 29307, 85741, 165127, 1, 24, 287, 2274, 13355, 61332, 224357, 638250, 1217270, 1, 27, 364, 3262, 21789, 115003
Offset: 0
Examples
The triangle P, at A158405, is given by rows 1 1...3 1...3...5 1...3...5...7 1...3...5...7...9... The augmentation of P is the array W starts with w(0,0)=1, by definition of W. Successive polynomials (rows of W) arise from P as shown here: ... 1->x+3, so that W has (row 1)=(1,3); ... x+3->(x^2+3x+5)+3*(x+3), so that W has (row 2)=(1,6,14); ... x^2+6x+14->(x^3+3x^2+5x+7)+6(x^2+3x+5)+14(x+3), so that (row 3)=(1,9,37,79). ... First 7 rows of W: 1 1 3 1 6 14 1 9 37 79 1 12 69 242 494 1 15 110 516 1658 3294 1 18 160 928 3870 11764 22952
Links
- L. Carlitz, Enumeration of two-line arrays, Fib. Quart., Vol. 11 Number 2 (1973), 113-130.
Programs
-
Mathematica
p[n_, k_] := 2 k + 1 Table[p[n, k], {n, 0, 5}, {k, 0, n}] (* A158405 *) m[n_] := Table[If[i <= j, p[n + 1 - i, j - i], 0], {i, n}, {j, n + 1}] TableForm[m[4]] w[0, 0] = 1; w[1, 0] = p[1, 0]; w[1, 1] = p[1, 1]; v[0] = w[0, 0]; v[1] = {w[1, 0], w[1, 1]}; v[n_] := v[n - 1].m[n] TableForm[Table[v[n], {n, 0, 6}]] (* A193091 *) Flatten[Table[v[n], {n, 0, 9}]]
Formula
From Peter Bala, Aug 02 2012: (Start)
T(n,k) = (n-k+1)/n*Sum_{i=0..k} C(n+1,n-k+i+1)*C(2*n+i+1,i) for 0 <= k <= n.
Recurrence equation: T(n,k) = Sum_{i=0..k} (2*k-2*i+1)*T(n-1,i).
(End)
Comments