A193095 Number of times n can be written as concatenation of exactly two nonzero squares in decimal representation.
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0
Examples
a(164) = 2, A191933(15) = A192993(1) = 164: 1'64 == 16'4.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
Crossrefs
Cf. A010052.
Programs
-
Haskell
a193095 n = sum $ map c [1..(length $ show n) - 1] where c k | head ys == '0' = 0 | otherwise = a010052 (read xs) * a010052 (read ys) where (xs,ys) = splitAt k $ show n
-
PARI
A193095(n) = sum( t=1,#Str(n)-1, apply(issquare,divrem(n,10^t))==[1,1]~ && n%10^t>=10^(t-1)) \\ M. F. Hasler, Jul 24 2011
-
PARI
A193095(n)={ my(c,p=1); while( n>p*=10, n%p*10>=p||next; issquare(n%p)||next; issquare(n\p) && c++);c} \\ M. F. Hasler, Jul 24 2011
Comments