A193097 Numbers that are the concatenation of exactly one pair of nonzero squares.
11, 14, 19, 41, 44, 49, 91, 94, 99, 116, 125, 136, 149, 161, 169, 181, 251, 254, 259, 361, 364, 369, 416, 425, 436, 449, 464, 481, 491, 494, 499, 641, 644, 649, 811, 814, 819, 916, 925, 936, 949, 964, 981, 1001, 1004, 1009, 1100, 1121, 1144, 1169, 1196, 1211
Offset: 1
Examples
161 = concat(4^2,1^2), therefore 161 is a term; 164 = concat(1^2,8^2) = concat(4^2,2^2), therefore 164 is not a term (A191933(15)=A192993(1)=164, A193095(164)=2).
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Programs
-
Haskell
import Data.List (elemIndices) a193097 n = a193097_list !! (n-1) a193097_list = elemIndices 1 $ map a193095 [0..]
-
Mathematica
Take[Union[FromDigits[Flatten[IntegerDigits/@((#)^2)]]&/@Tuples[Range[14],2]],60] (* Harvey P. Dale, Jul 27 2011 *)
Comments