cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A193111 G.f. satisfies: 1 = Sum_{n>=0} (-x)^(n*(n+1)/2) * A(x)^(n+1).

Original entry on oeis.org

1, 1, 2, 6, 19, 63, 218, 781, 2869, 10742, 40846, 157318, 612446, 2406100, 9527159, 37981611, 152328497, 614167702, 2487941464, 10121128882, 41330709103, 169362297620, 696187639438, 2870017515884, 11862845007114, 49152859179055
Offset: 0

Views

Author

Paul D. Hanna, Jul 16 2011

Keywords

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 6*x^3 + 19*x^4 + 63*x^5 + 218*x^6 +...
which satisfies:
1 = A(x) - x*A(x)^2 - x^3*A(x)^3 + x^6*A(x)^4 + x^10*A(x)^5 - x^15*A(x)^6 - x^21*A(x)^7 ++--...
Related expansions.
A(x)^2 = 1 + 2*x + 5*x^2 + 16*x^3 + 54*x^4 + 188*x^5 + 674*x^6 +...
A(x)^3 = 1 + 3*x + 9*x^2 + 31*x^3 + 111*x^4 + 405*x^5 + 1505*x^6 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=[1]); for(i=1, n, A=concat(A, 0); A[#A]=polcoeff(1-sum(m=0, sqrtint(2*(#A))+1, (-x)^(m*(m+1)/2)*Ser(A)^(m+1)), #A-1)); if(n<0, 0, A[n+1])}

Formula

G.f. A(x) satisfies the continued fraction:
1 = A(x)/(1+ x*A(x)/(1- x*(1+x)*A(x)/(1+ x^3*A(x)/(1+ x^2*(1-x^2)*A(x)/(1+ x^5*A(x)/(1- x^3*(1+x^3)*A(x)/(1+ x^7*A(x)/(1+ x^4*(1-x^4)*A(x)/(1- ...)))))))))
due to an identity of a partial elliptic theta function.
a(n) ~ c * d^n / n^(3/2), where d = 4.39601711776597002671715735353... and c = 0.541742533522963093430641871... - Vaclav Kotesovec, Oct 23 2020

A193112 G.f. satisfies: 1 = Sum_{n>=0} (-x)^(n*(n+1)/2) * A(x)^(2*n+1).

Original entry on oeis.org

1, 1, 3, 13, 63, 328, 1796, 10200, 59529, 354837, 2151079, 13221261, 82200739, 516053099, 3266812048, 20829635112, 133651716406, 862342656359, 5591505085491, 36416212224801, 238114435569354, 1562560513492974, 10287406857203911
Offset: 0

Views

Author

Paul D. Hanna, Jul 16 2011

Keywords

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 13*x^3 + 63*x^4 + 328*x^5 + 1796*x^6 +...
which satisfies:
1 = A(x) - x*A(x)^3 - x^3*A(x)^5 + x^6*A(x)^7 + x^10*A(x)^9 - x^15*A(x)^11 - x^21*A(x)^13 ++--...
Related expansions.
A(x)^3 = 1 + 3*x + 12*x^2 + 58*x^3 + 303*x^4 + 1662*x^5 + 9447*x^6 +...
A(x)^5 = 1 + 5*x + 25*x^2 + 135*x^3 + 760*x^4 + 4401*x^5 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=[1]); for(i=1, n, A=concat(A, 0); A[#A]=polcoeff(1-sum(m=0, sqrtint(2*(#A))+1, (-x)^(m*(m+1)/2)*Ser(A)^(2*m+1)), #A-1)); if(n<0, 0, A[n+1])}

Formula

G.f. A(x) satisfies the continued fraction:
1 = A(x)/(1+ x*A(x)^2/(1- x*(1+x)*A(x)^2/(1+ x^3*A(x)^2/(1+ x^2*(1-x^2)*A(x)^2/(1+ x^5*A(x)^2/(1- x^3*(1+x^3)*A(x)^2/(1+ x^7*A(x)^2/(1+ x^4*(1-x^4)*A(x)^2/(1- ...)))))))))
due to an identity of a partial elliptic theta function.

A193113 G.f. satisfies: 1 = Sum_{n>=0} (-x)^(n*(n+1)/2) * A(x)^(3*n+1).

Original entry on oeis.org

1, 1, 4, 23, 151, 1074, 8059, 62814, 503619, 4126954, 34411602, 291025337, 2490377810, 21523367553, 187603609077, 1647252368595, 14556722879278, 129366008725176, 1155458240271571, 10366549508487178, 93382085749705066, 844255894224907354
Offset: 0

Views

Author

Paul D. Hanna, Jul 16 2011

Keywords

Examples

			G.f.: A(x) = 1 + x + 4*x^2 + 23*x^3 + 151*x^4 + 1074*x^5 + 8059*x^6 +...
which satisfies:
1 = A(x) - x*A(x)^4 - x^3*A(x)^7 + x^6*A(x)^10 + x^10*A(x)^13 - x^15*A(x)^16 - x^21*A(x)^19 ++--...
Related expansions.
A(x)^4 = 1 + 4*x + 22*x^2 + 144*x^3 + 1025*x^4 + 7696*x^5 +...
A(x)^7 = 1 + 7*x + 49*x^2 + 364*x^3 + 2814*x^4 + 22400*x^5 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=[1]); for(i=1, n, A=concat(A, 0); A[#A]=polcoeff(1-sum(m=0, sqrtint(2*(#A))+1, (-x)^(m*(m+1)/2)*Ser(A)^(3*m+1)), #A-1)); if(n<0, 0, A[n+1])}

Formula

G.f. A(x) satisfies the continued fraction:
1 = A(x)/(1+ x*A(x)^3/(1- x*(1+x)*A(x)^3/(1+ x^3*A(x)^3/(1+ x^2*(1-x^2)*A(x)^3/(1+ x^5*A(x)^3/(1- x^3*(1+x^3)*A(x)^3/(1+ x^7*A(x)^3/(1+ x^4*(1-x^4)*A(x)^3/(1- ...)))))))))
due to an identity of a partial elliptic theta function.

A193115 G.f. satisfies: 1 = Sum_{n>=0} (-x)^(n^2) * A(x)^(2*n+1).

Original entry on oeis.org

1, 1, 3, 12, 54, 265, 1373, 7388, 40888, 231250, 1330618, 7764670, 45841323, 273316120, 1643345418, 9953021248, 60665811025, 371850104167, 2290623433302, 14173331572490, 88049709138896, 548978010516319, 3434070688405887, 21545961024510032
Offset: 0

Views

Author

Paul D. Hanna, Jul 16 2011

Keywords

Examples

			 G.f.: A(x) = 1 + x + 3*x^2 + 12*x^3 + 54*x^4 + 265*x^5 + 1373*x^6 +...
which satisfies:
1 = A(x) - x*A(x)^3 + x^4*A(x)^5 - x^9*A(x)^7 + x^16*A(x)^9 -+...
Related expansions.
A(x)^3 = 1 + 3*x + 12*x^2 + 55*x^3 + 270*x^4 + 1398*x^5 + 7518*x^6 +...
A(x)^5 = 1 + 5*x + 25*x^2 + 130*x^3 + 695*x^4 + 3816*x^5 +...
		

Crossrefs

Formula

The g.f. A(x) satisfies:
(1) 1 = Sum_{n>=0} (-x)^n*A(x)^(2*n+1) * Product_{k=1..n} (1 + x^(4*k-3)*A(x)^2)/(1 + x^(4*k-1)*A(x)^2);
(2) 1 = A(x)/(1+ x*A(x)^2/(1- x*(1-x^2)*A(x)^2/(1+ x^5*A(x)^2/(1- x^3*(1-x^4)*A(x)^2/(1+ x^9*A(x)^2/(1- x^5*(1-x^6)*A(x)^2/(1+ x^13*A(x)^2/(1- x^7*(1-x^8)*A(x)^2/(1- ...))))))))) (continued fraction);
due to identities of a partial elliptic theta function.

A193116 G.f. satisfies: 1 = Sum_{n>=0} (-x)^(n^2) * A(x)^(3*n+1).

Original entry on oeis.org

1, 1, 4, 22, 139, 958, 6979, 52851, 411884, 3281684, 26609931, 218874331, 1821767351, 15315464340, 129859965329, 1109239893974, 9536166375605, 82449167265098, 716449009997437, 6253709697731562, 54808237437608982, 482103739329417219
Offset: 0

Views

Author

Paul D. Hanna, Jul 16 2011

Keywords

Examples

			G.f.: A(x) = 1 + x + 4*x^2 + 22*x^3 + 139*x^4 + 958*x^5 + 6979*x^6 +...
which satisfies:
1 = A(x) - x*A(x)^4 + x^4*A(x)^7 - x^9*A(x)^10 + x^16*A(x)^13 -+...
Related expansions.
A(x)^4 = 1 + 4*x + 22*x^2 + 140*x^3 + 965*x^4 + 7028*x^5 +...
A(x)^7 = 1 + 7*x + 49*x^2 + 357*x^3 + 2688*x^4 + 20811*x^5 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=[1]); for(i=1, n, A=concat(A, 0); A[#A]=polcoeff(1-sum(m=0, sqrtint(#A)+1, (-x)^(m^2)*Ser(A)^(3*m+1) ), #A-1)); if(n<0, 0, A[n+1])}

Formula

The g.f. A(x) satisfies:
(1) 1 = Sum_{n>=0} (-x)^n*A(x)^(3*n+1) * Product_{k=1..n} (1 + x^(4*k-3)*A(x)^3)/(1 + x^(4*k-1)*A(x)^3);
(2) 1 = A(x)/(1+ x*A(x)^3/(1- x*(1-x^2)*A(x)^3/(1+ x^5*A(x)^3/(1- x^3*(1-x^4)*A(x)^3/(1+ x^9*A(x)^3/(1- x^5*(1-x^6)*A(x)^3/(1+ x^13*A(x)^3/(1- x^7*(1-x^8)*A(x)^3/(1- ...))))))))) (continued fraction);
due to identities of a partial elliptic theta function.
Showing 1-5 of 5 results.