A193114
G.f. A(x) satisfies 1 = Sum_{n>=0} (-x)^(n^2) * A(x)^(n+1).
Original entry on oeis.org
1, 1, 2, 5, 13, 37, 111, 345, 1103, 3604, 11977, 40356, 137543, 473317, 1642258, 5738828, 20179338, 71346433, 253485527, 904536366, 3240418665, 11649734335, 42017535527, 151992797355, 551298507620, 2004602732825, 7305747551718, 26682235709115
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 5*x^3 + 13*x^4 + 37*x^5 + 111*x^6 + ...
which satisfies:
1 = A(x) - x*A(x)^2 + x^4*A(x)^3 - x^9*A(x)^4 + x^16*A(x)^5 -+ ...
Related expansions.
A(x)^2 = 1 + 2*x + 5*x^2 + 14*x^3 + 40*x^4 + 120*x^5 + 373*x^6 + ...
A(x)^3 = 1 + 3*x + 9*x^2 + 28*x^3 + 87*x^4 + 276*x^5 + 893*x^6 + ...
-
e36:= 1 - add((-x)^(n^2)*a^(n+1),n=0..6):
S:= series(RootOf(e36,a),x,37):
seq(coeff(S,x,i),i=0..36); # Robert Israel, Apr 10 2023
-
{a(n)=local(A=[1]); for(i=1, n, A=concat(A, 0); A[#A]=polcoeff(1-sum(m=0, sqrtint(#A)+1, (-x)^(m^2)*Ser(A)^(m+1)), #A-1)); if(n<0, 0, A[n+1])}
A193112
G.f. satisfies: 1 = Sum_{n>=0} (-x)^(n*(n+1)/2) * A(x)^(2*n+1).
Original entry on oeis.org
1, 1, 3, 13, 63, 328, 1796, 10200, 59529, 354837, 2151079, 13221261, 82200739, 516053099, 3266812048, 20829635112, 133651716406, 862342656359, 5591505085491, 36416212224801, 238114435569354, 1562560513492974, 10287406857203911
Offset: 0
G.f.: A(x) = 1 + x + 3*x^2 + 13*x^3 + 63*x^4 + 328*x^5 + 1796*x^6 +...
which satisfies:
1 = A(x) - x*A(x)^3 - x^3*A(x)^5 + x^6*A(x)^7 + x^10*A(x)^9 - x^15*A(x)^11 - x^21*A(x)^13 ++--...
Related expansions.
A(x)^3 = 1 + 3*x + 12*x^2 + 58*x^3 + 303*x^4 + 1662*x^5 + 9447*x^6 +...
A(x)^5 = 1 + 5*x + 25*x^2 + 135*x^3 + 760*x^4 + 4401*x^5 +...
-
{a(n)=local(A=[1]); for(i=1, n, A=concat(A, 0); A[#A]=polcoeff(1-sum(m=0, sqrtint(2*(#A))+1, (-x)^(m*(m+1)/2)*Ser(A)^(2*m+1)), #A-1)); if(n<0, 0, A[n+1])}
A193113
G.f. satisfies: 1 = Sum_{n>=0} (-x)^(n*(n+1)/2) * A(x)^(3*n+1).
Original entry on oeis.org
1, 1, 4, 23, 151, 1074, 8059, 62814, 503619, 4126954, 34411602, 291025337, 2490377810, 21523367553, 187603609077, 1647252368595, 14556722879278, 129366008725176, 1155458240271571, 10366549508487178, 93382085749705066, 844255894224907354
Offset: 0
G.f.: A(x) = 1 + x + 4*x^2 + 23*x^3 + 151*x^4 + 1074*x^5 + 8059*x^6 +...
which satisfies:
1 = A(x) - x*A(x)^4 - x^3*A(x)^7 + x^6*A(x)^10 + x^10*A(x)^13 - x^15*A(x)^16 - x^21*A(x)^19 ++--...
Related expansions.
A(x)^4 = 1 + 4*x + 22*x^2 + 144*x^3 + 1025*x^4 + 7696*x^5 +...
A(x)^7 = 1 + 7*x + 49*x^2 + 364*x^3 + 2814*x^4 + 22400*x^5 +...
-
{a(n)=local(A=[1]); for(i=1, n, A=concat(A, 0); A[#A]=polcoeff(1-sum(m=0, sqrtint(2*(#A))+1, (-x)^(m*(m+1)/2)*Ser(A)^(3*m+1)), #A-1)); if(n<0, 0, A[n+1])}
A193115
G.f. satisfies: 1 = Sum_{n>=0} (-x)^(n^2) * A(x)^(2*n+1).
Original entry on oeis.org
1, 1, 3, 12, 54, 265, 1373, 7388, 40888, 231250, 1330618, 7764670, 45841323, 273316120, 1643345418, 9953021248, 60665811025, 371850104167, 2290623433302, 14173331572490, 88049709138896, 548978010516319, 3434070688405887, 21545961024510032
Offset: 0
G.f.: A(x) = 1 + x + 3*x^2 + 12*x^3 + 54*x^4 + 265*x^5 + 1373*x^6 +...
which satisfies:
1 = A(x) - x*A(x)^3 + x^4*A(x)^5 - x^9*A(x)^7 + x^16*A(x)^9 -+...
Related expansions.
A(x)^3 = 1 + 3*x + 12*x^2 + 55*x^3 + 270*x^4 + 1398*x^5 + 7518*x^6 +...
A(x)^5 = 1 + 5*x + 25*x^2 + 130*x^3 + 695*x^4 + 3816*x^5 +...
A193116
G.f. satisfies: 1 = Sum_{n>=0} (-x)^(n^2) * A(x)^(3*n+1).
Original entry on oeis.org
1, 1, 4, 22, 139, 958, 6979, 52851, 411884, 3281684, 26609931, 218874331, 1821767351, 15315464340, 129859965329, 1109239893974, 9536166375605, 82449167265098, 716449009997437, 6253709697731562, 54808237437608982, 482103739329417219
Offset: 0
G.f.: A(x) = 1 + x + 4*x^2 + 22*x^3 + 139*x^4 + 958*x^5 + 6979*x^6 +...
which satisfies:
1 = A(x) - x*A(x)^4 + x^4*A(x)^7 - x^9*A(x)^10 + x^16*A(x)^13 -+...
Related expansions.
A(x)^4 = 1 + 4*x + 22*x^2 + 140*x^3 + 965*x^4 + 7028*x^5 +...
A(x)^7 = 1 + 7*x + 49*x^2 + 357*x^3 + 2688*x^4 + 20811*x^5 +...
-
{a(n)=local(A=[1]); for(i=1, n, A=concat(A, 0); A[#A]=polcoeff(1-sum(m=0, sqrtint(#A)+1, (-x)^(m^2)*Ser(A)^(3*m+1) ), #A-1)); if(n<0, 0, A[n+1])}
A357233
a(n) = coefficient of x^n in power series A(x) such that: 0 = Sum_{n>=0} (-1)^n * x^(n*(n-1)/2) * A(x)^(n*(n+1)/2).
Original entry on oeis.org
1, 1, 3, 11, 46, 207, 980, 4810, 24258, 124951, 654587, 3476985, 18682885, 101372340, 554655435, 3056823864, 16953795008, 94555853982, 529986289496, 2983788539017, 16865736120654, 95677703975144, 544554485912572, 3108656601838926, 17794927199793895
Offset: 0
G.f.: A(x) = 1 + x + 3*x^2 + 11*x^3 + 46*x^4 + 207*x^5 + 980*x^6 + 4810*x^7 + 24258*x^8 + 124951*x^9 + 654587*x^10 + 3476985*x^11 + 18682885*x^12 + ...
such that
0 = 1 - A(x) + x*A(x)^3 - x^3*A(x)^6 + x^6*A(x)^10 - x^10*A(x)^15 + x^15*A(x)^21 - x^21*A(x)^28 + ... + (-1)^n*x^(n*(n-1)/2)*A(x)^(n*(n+1)/2) + ...
SPECIFIC VALUES.
A(1/7) = 1.2997111125331190764482142994969231...
A(1/8) = 1.221202992288263902503896694281250380662689...
CONTINUED FRACTION.
The continued fraction in formula (2) may be seen to converge to zero as a limit of successive steps that begin as follows:
[2] 1/(1 + A/(1 - A*(1 - x*A)))
[3] 1/(1 + A/(1 - A*(1 - x*A)/(1 + x^2*A^3)))
[4] 1/(1 + A/(1 - A*(1 - x*A)/(1 + x^2*A^3/(1 - x*A^2*(1 - x^2*A^2)))))
[5] 1/(1 + A/(1 - A*(1 - x*A)/(1 + x^2*A^3/(1 - x*A^2*(1 - x^2*A^2)/(1 + x^4*A^5)))))
[6] 1/(1 + A/(1 - A*(1 - x*A)/(1 + x^2*A^3/(1 - x*A^2*(1 - x^2*A^2)/(1 + x^4*A^5/(1 - x^2*A^3*(1 - x^3*A^3)))))))
...
substituting A = A(x), the resulting power series in x are:
[2] x^2 - 3*x^3 - 13*x^4 - 58*x^5 - 275*x^6 - 1350*x^7 + ...
[3] x^3 - 5*x^4 - 23*x^5 - 111*x^6 - 553*x^7 - 2820*x^8 + ...
[4] x^7 + 11*x^8 + 87*x^9 + 602*x^10 + 3894*x^11 + 24245*x^12 + ...
[5] x^9 + 14*x^10 + 132*x^11 + 1046*x^12 + 7538*x^13 + ...
[6] -x^15 - 21*x^16 - 273*x^17 - 2821*x^18 - 25432*x^19 + ...
[7] -x^18 - 25*x^19 - 375*x^20 - 4375*x^21 - 43800*x^22 + ...
[8] x^26 + 34*x^27 + 663*x^28 + 9725*x^29 + 119226*x^30 + ...
...
the limit of these series converges to zero for |x| < r < 1 where r is the radius of convergence of g.f. A(x).
-
{a(n) = my(A=[1],M=1); for(i=1,n, A = concat(A,0); M = ceil(sqrt(2*(#A)+1));
A[#A] = polcoeff( sum(n=0,M, (-1)^n * x^(n*(n-1)/2) * Ser(A)^(n*(n+1)/2) ), #A-1) ); A[n+1]}
for(n=0,30, print1(a(n),", "))
Showing 1-6 of 6 results.