A193131 Numbers of spanning trees of the complete tripartite graphs K_{n,n,n}.
3, 384, 419904, 1610612736, 15000000000000, 277326388342554624, 8964455938423371595776, 464227514732017603087171584, 36132988816414656965872925540352, 4026531840000000000000000000000000000, 618293049656826371620197206797522978209792
Offset: 1
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..50
- Eric Weisstein's World of Mathematics, Complete Tripartite Graph
- Eric Weisstein's World of Mathematics, Spanning Tree
Programs
-
Maple
with(LinearAlgebra): a:= proc(n) local h, i, M; M:= Matrix(3*n, shape=symmetric); for h in [seq(seq([[i, j+n],[i, j+2*n],[i+n, j+2*n]][], j=1..n), i=1..n)] do M[h[]]:= -1 od; for i to 3*n do M[i, i]:= -add(M[i, j], j=1..3*n) od; Determinant(DeleteColumn(DeleteRow(M, 1), 1)) end: seq(a(n), n=1..12); # Alois P. Heinz, Jul 18 2011
-
Mathematica
Table[3 8^(n - 1) n^(3 n - 2), {n, 11}]
-
PARI
a(n)=3*n^(3*n-2)<<(3*n-3) \\ Charles R Greathouse IV, Jul 29 2011
Formula
a(n) = 3*8^(n-1)*n^(3*n-2).
Extensions
More terms from Alois P. Heinz, Jul 18 2011