cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A193141 Primes that are the sum of 5 distinct positive cubes.

Original entry on oeis.org

433, 443, 541, 673, 719, 827, 829, 881, 947, 953, 1171, 1217, 1223, 1277, 1289, 1297, 1559, 1583, 1609, 1619, 1709, 1747, 1801, 1861, 1871, 1879, 1889, 1973, 2003, 2017, 2081, 2087, 2131, 2137, 2141, 2213, 2221, 2251, 2269, 2287, 2297, 2311, 2339, 2341, 2393
Offset: 1

Views

Author

Keywords

Examples

			433=1^3+3^3+4^3+5^3+6^3, 443=1^3+2^3+3^3+4^3+7^3, 541=1^3+2^3+4^3+5^3+7^3.
		

Crossrefs

Programs

  • Maple
    N:= 3000: # for all terms <= N
    S:= {}:
    for a from 1 while 5*a^3 < N do
      for b from a+1 while a^3 + 4*b^3 < N do
        for c from b+1 while a^3 + b^3 + 3*c^3 < N do
          for d from c+1 while a^3 + b^3 + c^3 + 2*d^3 < N do
            S:= S union select(isprime,{seq(a^3 + b^3 + c^3 + d^3 + e^3, e=d+1..floor((N-a^3-b^3-c^3-d^3)^(1/3)))})
    od od od od:
    sort(convert(S,list)); # Robert Israel, Jun 21 2019
  • Mathematica
    lst = {}; Do[Do[Do[Do[Do[p = a^3 + b^3 + c^3 + d^3 + e^3; If[PrimeQ[p], AppendTo[lst, p]], {e, d - 1, 1, -1}], {d, c - 1, 1, -1}], {c, b - 1, 1, -1}], {b, a - 1, 1, -1}], {a, 6, 20}]; Take[Union[lst], 80]
    Module[{nn=15,upto},upto=nn^3+9;Select[Union[Total/@Subsets[Range[nn]^3,{5}]],PrimeQ[#] && #<=upto&]] (* Harvey P. Dale, Aug 31 2023 *)
  • PARI
    cbrt(x)=if(x<0,x,x^(1/3));
    upto(lim)=my(v=List(), tb, tc, td, te); for(a=6, lim^(1/3), for(b=4, min(a-1, cbrt(lim-a^2)), tb=a^3+b^3; for(c=3, min(b-1, cbrt(lim-tb)), tc=tb+c^3; for(d=2, min(c-1, cbrt(lim-tc)), td=tc+d^3; forstep(e=1+td%2, d-1, 2, te=td+e^3; if(te>lim, break); if(isprime(te), listput(v, te))))))); vecsort(Vec(v), , 8)
    \\ Charles R Greathouse IV, Jul 17 2011

A193143 Primes which are the sum of 5 distinct positive squares in more than one way.

Original entry on oeis.org

103, 127, 139, 151, 163, 167, 179, 191, 199, 211, 223, 227, 229, 239, 241, 251, 263, 271, 277, 281, 283, 307, 311, 313, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491
Offset: 1

Views

Author

Keywords

Comments

All terms from 103 onwards in A068229 are primes which are the sum of 5 distinct positive squares in more than one way.

Examples

			103 = 1^2 + 2^2 + 3^2 + 5^2 + 8^2 = 2^2 + 3^2 + 4^2 + 5^2 + 7^2.
127 = 1^2 + 2^2 + 3^2 + 7^2 + 8^2 = 1^2 + 4^2 + 5^2 + 6^2 + 7^2 = 1^2 + 2^2 + 4^2 + 5^2 + 9^2.
		

Crossrefs

Programs

  • Mathematica
    sum5sqP = {}; Do[Do[Do[Do[Do[p = a^2 + b^2 + c^2 + d^2 + e^2; If[PrimeQ[p], AppendTo[sum5sqP, p]], {e, d - 1, 1, -1}], {d, c - 1, 1, -1}], {c, b - 1, 1, -1}], {b, a - 1, 1, -1}], {a, 6, 30}]; a = Take[Sort[sum5sqP], 1000]; a = Select[Table[If[a[[n]] == a[[n - 1]] && a[[n]] != a[[n - 2]], a[[n]], ""], {n, 3, Length[a]}], IntegerQ]
Showing 1-2 of 2 results.