A193196 G.f.: A(x) = Sum_{n>=0} x^n / Product_{k=1..n} (1 - k*x^k).
1, 1, 2, 3, 6, 9, 19, 29, 57, 94, 172, 280, 519, 833, 1472, 2433, 4185, 6800, 11666, 18816, 31686, 51340, 84929, 136561, 225476, 359746, 586133, 936243, 1511650, 2397400, 3856698, 6084186, 9711492, 15299490, 24247456, 38016261, 60079125, 93752706, 147284928
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + x + 2*x^2 + 3*x^3 + 6*x^4 + 9*x^5 + 19*x^6 + 29*x^7 +... where: A(x) = 1 + x/(1-x) + x^2/((1-x)*(1-2*x^2)) + x^3/((1-x)*(1-2*x^2)*(1-3*x^3)) + x^4/((1-x)*(1-2*x^2)*(1-3*x^3)*(1-4*x^4)) +... From _Joerg Arndt_, Aug 27 2014: (Start) The a(4) = 5 trees described in the comment are: : : 1: : [ 1 1 1 1 ] <--= branch lengths : [ 0 0 0 0 ] <--= branch heights : : O--o : .--o : .--o : .--o : : : 2: : [ 1 1 2 ] : [ 0 0 0 ] : : O--o : .--o : .--o--o : : : 3: : [ 1 3 ] : [ 0 0 ] : : O--o : .--o--o--o : : : 4: : [ 2 2 ] : [ 0 0 ] : : O--o--o : .--o--o : : : 5: : [ 2 2 ] : [ 0 1 ] : : O--o--o : .--o--o : : : 6: : [ 4 ] : [ 0 ] : : O--o--o--o--o : See the Arndt link for all examples for 1 <= n <= 7. (End) a(6) = 19 because the 11 partitions of 6 with the products as in the comment are 01: [ 1 1 1 1 1 1 ] 1*1*1*1*1 = 1 02: [ 1 1 1 1 2 ] 1*1*1*1 = 1 03: [ 1 1 1 3 ] 1*1*1 = 1 04: [ 1 1 2 2 ] 1*1*2 = 2 05: [ 1 1 4 ] 1*1 = 1 06: [ 1 2 3 ] 1*2 = 1 07: [ 1 5 ] 1 = 1 08: [ 2 2 2 ] 2*2 = 4 09: [ 2 4 ] 2 = 2 10: [ 3 3 ] 3 = 3 11: [ 6 ] (empty prod.) = 1 and the sum of the products is 19. - _Joerg Arndt_, Sep 03 2014
Links
- Robert Israel, Table of n, a(n) for n = 0..5627
- Joerg Arndt, trees as in comment for 1<=n<=7
Programs
-
Maple
N:= 100: # to get all terms up to a(N) gN:= add(x^n/mul(1-k*x^k,k=1..n),n=0..N): S:= series(gN,x,N+1): seq(coeff(S,x,n), n=0..N); # Robert Israel, Aug 28 2014
-
PARI
{a(n)=my(A=1);polcoeff(sum(m=0,n,x^m/prod(k=1,m,1-k*x^k +x*O(x^n))),n)}
Formula
G.f.: G(0) - 1 where G(k) = 1 + (1-x)/(1-x^k*k)/(1-x/(x+(1-x)/G(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Jan 22 2013
a(n) = sum( prod(j=2..m, min(C[j-1], C[j]))) where the sum is over all partitions C[1..m] (m parts) of n, see example. - Joerg Arndt, Sep 03 2014
From Vaclav Kotesovec, Jun 18 2019: (Start)
a(n) ~ c * 3^(n/3), where
c = 9390.8440644933535486959046639452060731482141... if mod(n,3)=0
c = 9390.7389359914729419715573277079935321683397... if mod(n,3)=1
c = 9390.7321933046037554603013237581369727858708... if mod(n,3)=2
(End)
Comments