cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A193196 G.f.: A(x) = Sum_{n>=0} x^n / Product_{k=1..n} (1 - k*x^k).

Original entry on oeis.org

1, 1, 2, 3, 6, 9, 19, 29, 57, 94, 172, 280, 519, 833, 1472, 2433, 4185, 6800, 11666, 18816, 31686, 51340, 84929, 136561, 225476, 359746, 586133, 936243, 1511650, 2397400, 3856698, 6084186, 9711492, 15299490, 24247456, 38016261, 60079125, 93752706, 147284928
Offset: 0

Views

Author

Paul D. Hanna, Jul 17 2011

Keywords

Comments

Number of rooted ordered trees with n non-root nodes such that both successive branch heights and the lengths of the branches are weakly increasing; see example. - Joerg Arndt, Aug 27 2014

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 3*x^3 + 6*x^4 + 9*x^5 + 19*x^6 + 29*x^7 +...
where:
A(x) = 1 + x/(1-x) + x^2/((1-x)*(1-2*x^2)) + x^3/((1-x)*(1-2*x^2)*(1-3*x^3)) + x^4/((1-x)*(1-2*x^2)*(1-3*x^3)*(1-4*x^4)) +...
From _Joerg Arndt_, Aug 27 2014: (Start)
The a(4) = 5 trees described in the comment are:
:
:     1:
:    [ 1 1 1 1 ]  <--= branch lengths
:    [ 0 0 0 0 ]  <--= branch heights
:
:  O--o
:  .--o
:  .--o
:  .--o
:
:
:     2:
:    [ 1 1 2 ]
:    [ 0 0 0 ]
:
:  O--o
:  .--o
:  .--o--o
:
:
:     3:
:    [ 1 3 ]
:    [ 0 0 ]
:
:  O--o
:  .--o--o--o
:
:
:     4:
:    [ 2 2 ]
:    [ 0 0 ]
:
:  O--o--o
:  .--o--o
:
:
:     5:
:    [ 2 2 ]
:    [ 0 1 ]
:
:  O--o--o
:     .--o--o
:
:
:     6:
:    [ 4 ]
:    [ 0 ]
:
:  O--o--o--o--o
:
See the Arndt link for all examples for 1 <= n <= 7.
(End)
a(6) = 19 because the 11 partitions of 6 with the products as in the comment are
01:  [ 1 1 1 1 1 1 ]   1*1*1*1*1 = 1
02:  [ 1 1 1 1 2 ]     1*1*1*1   = 1
03:  [ 1 1 1 3 ]       1*1*1     = 1
04:  [ 1 1 2 2 ]       1*1*2     = 2
05:  [ 1 1 4 ]         1*1       = 1
06:  [ 1 2 3 ]         1*2       = 1
07:  [ 1 5 ]           1         = 1
08:  [ 2 2 2 ]         2*2       = 4
09:  [ 2 4 ]           2         = 2
10:  [ 3 3 ]           3         = 3
11:  [ 6 ]         (empty prod.) = 1
and the sum of the products is 19. - _Joerg Arndt_, Sep 03 2014
		

Programs

  • Maple
    N:= 100: # to get all terms up to a(N)
    gN:= add(x^n/mul(1-k*x^k,k=1..n),n=0..N):
    S:= series(gN,x,N+1):
    seq(coeff(S,x,n), n=0..N); # Robert Israel, Aug 28 2014
  • PARI
    {a(n)=my(A=1);polcoeff(sum(m=0,n,x^m/prod(k=1,m,1-k*x^k +x*O(x^n))),n)}

Formula

G.f.: G(0) - 1 where G(k) = 1 + (1-x)/(1-x^k*k)/(1-x/(x+(1-x)/G(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Jan 22 2013
a(n) = sum( prod(j=2..m, min(C[j-1], C[j]))) where the sum is over all partitions C[1..m] (m parts) of n, see example. - Joerg Arndt, Sep 03 2014
From Vaclav Kotesovec, Jun 18 2019: (Start)
a(n) ~ c * 3^(n/3), where
c = 9390.8440644933535486959046639452060731482141... if mod(n,3)=0
c = 9390.7389359914729419715573277079935321683397... if mod(n,3)=1
c = 9390.7321933046037554603013237581369727858708... if mod(n,3)=2
(End)