A193229 A double factorial triangle.
1, 1, 1, 3, 3, 2, 15, 15, 12, 6, 105, 105, 90, 60, 24, 945, 945, 840, 630, 360, 120, 10395, 10395, 9450, 7560, 5040, 2520, 720, 135135, 135135, 124740, 103950, 75600, 45360, 20160, 5040, 2027025, 2027025, 1891890, 1621620, 1247400, 831600, 453600, 181440, 40320
Offset: 0
Examples
The first few rows of matrix M[i,j] are: 1, 1, 0, 0, 0, 0, ... 2, 2, 2, 0, 0, 0, ... 3, 3, 3, 3, 0, 0, ... 4, 4, 4, 4, 4, 0, ... 5, 5, 5, 5, 5, 5, ... The first few rows of triangle T(n,k) are: 1; 1, 1; 3, 3, 2; 15, 15, 12, 6; 105, 105, 90, 60, 24; 945, 945, 840, 630, 360, 120; 10395, 10395, 9450, 7560, 5040, 2520, 720; 135135, 135135, 124740, 103950, 75600, 45360, 20160, 5040;
Links
- Seiichi Manyama, Rows n = 0..139, flattened
Crossrefs
Programs
-
Maple
nmax:=7: M := Matrix(1..nmax+1,1..nmax+1): for i from 1 to nmax do for j from 1 to i+1 do M[i,j] := i od: od: for n from 0 to nmax do B := M^n: for k from 0 to n do T(n,k) := B[1,k+1] od: od: for n from 0 to nmax do seq(T(n,k),k=0..n) od: seq(seq(T(n,k),k=0..n),n=0..nmax); # Johannes W. Meijer, Jul 21 2011
-
PARI
row(n)=(matrix(n,n,i,j,(i>j-2)*i)^(n-1))[1,] \\ M. F. Hasler, Jul 24 2011
Formula
T(n,k) = the (k+1)-th term in the top row of M^n, where M is an infinite square production matrix; M[i,j] = i, i >= 1 and 1 <= j <= i+1, and M[i,j] = 0, i >= 1 and j >= i+2, see the examples.
It appears that T(n,k) = (2*n-k)!/(2^(n-k)*(n-k)!) with conjectural e.g.f. 1/(x*(1-2*z) + (1-x)*sqrt(1-2*z)) = 1 + (1+x)*z + (3+3*x+2*x^2)*z^2/2! + .... Cf. A102625. - Peter Bala, Jul 09 2012
Extensions
Corrected, edited and extended by Johannes W. Meijer, Jul 21 2011
More terms from Seiichi Manyama, Apr 06 2019
Comments