cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A220518 Numbers n such that A193232(n) is a triangular number.

Original entry on oeis.org

0, 1, 5, 9, 45, 49, 101, 153, 1569, 7163, 7171, 8162, 18974, 18976, 24467, 33490, 60290, 63046, 359539, 551494, 1769418, 2813691, 4140392, 4649729, 6675935, 9653486, 59131393, 158169499, 243345386, 588183781, 1315697727, 1387290631, 1522472645, 1879098546
Offset: 1

Views

Author

Alex Ratushnyak, Mar 27 2013

Keywords

Comments

Numbers k such that bitwise XOR of first k triangular numbers is a triangular number.

Crossrefs

Cf. A193232.
Cf. A145827 (bitwise XOR of first k squares is a square).

Programs

  • C
    #include 
    typedef unsigned long long U64;
    U64 rootTriangular(U64 a) {
        U64 sr = 1L<<32, s, b;
        if (a < (sr/2)*(sr+1)) {
          sr>>=1;
          while (a < sr*(sr+1)/2)  sr>>=1;
        }
        for (b = sr>>1; b; b>>=1) {
            s = sr+b;
            if (a >= s*(s+1)/2)  sr = s;
        }
        return sr;
    }
    int main() {
      U64 a=0, i, t;
      for (i=0; i < 1L<<32; ++i) {
          a ^= i*(i+1)/2;
          t = rootTriangular(a);
          if (a == t*(t+1)/2)  printf("%llu\n", i);
      }
      return 0;
    }

A145768 a(n) = the bitwise XOR of squares of first n natural numbers.

Original entry on oeis.org

0, 1, 5, 12, 28, 5, 33, 16, 80, 1, 101, 28, 140, 37, 225, 0, 256, 33, 357, 12, 412, 37, 449, 976, 400, 993, 325, 924, 140, 965, 65, 896, 1920, 961, 1861, 908, 1692, 965, 1633, 912, 1488, 833, 1445, 668, 1292, 741, 2721, 512, 2816, 609, 2981, 396, 2844, 485
Offset: 0

Views

Author

Vladimir Reshetnikov, Oct 18 2008

Keywords

Comments

Up to n=10^8, a(15) is the only zero term and a(1)=a(9) are the only terms for which a(n)=1. Can it be proved that any number can only appear a finite number of times in this sequence? [M. F. Hasler, Oct 20 2008]
Even terms occur at A014601, odd terms at A042963; A010873(a(n))=A021913(n+1). - Reinhard Zumkeller, Jun 05 2012
If squares occur, they must be at indexes != 2 or 5 (mod 8). - Roderick MacPhee, Jul 17 2017

Crossrefs

Programs

  • Haskell
    import Data.Bits (xor)
    a145768 n = a145768_list !! n
    a145768_list = scanl1 xor a000290_list  -- Reinhard Zumkeller, Jun 05 2012
    
  • Maple
    A[0]:= 0:
    for n from 1 to 100 do A[n]:= Bits:-Xor(A[n-1],n^2) od:
    seq(A[i],i=0..100); # Robert Israel, Dec 08 2019
  • Mathematica
    Rest@ FoldList[BitXor, 0, Array[#^2 &, 50]]
  • PARI
    an=0; for( i=1,50, print1(an=bitxor(an,i^2),",")) \\ M. F. Hasler, Oct 20 2008
    
  • PARI
    al(n)=local(m);vector(n,k,m=bitxor(m,k^2))
    
  • Python
    from functools import reduce
    from operator import xor
    def A145768(n):
        return reduce(xor, [x**2 for x in range(n+1)]) # Chai Wah Wu, Aug 08 2014

Formula

a(n)=1^2 xor 2^2 xor ... xor n^2.
Showing 1-2 of 2 results.