A193251 Small rhombicosidodecahedron with faces of centered polygons.
1, 123, 605, 1687, 3609, 6611, 10933, 16815, 24497, 34219, 46221, 60743, 78025, 98307, 121829, 148831, 179553, 214235, 253117, 296439, 344441, 397363, 455445, 518927, 588049, 663051, 744173, 831655, 925737, 1026659, 1134661, 1249983, 1372865, 1503547, 1642269
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..10000
- OEIS Wiki, (Centered_polygons) pyramidal numbers.
- Wikipedia, Tetrahedral number.
- Wikipedia, Triangular number.
- Wikipedia, Centered polygonal number.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Programs
-
Magma
[40*n^3-60*n^2+22*n-1: n in [1..50]]; // Vincenzo Librandi, Aug 30 2011
-
Mathematica
A193251[n_] := (2*n - 1)*(20*(n - 1)*n + 1); Array[A193251, 50] (* or *) LinearRecurrence[{4, -6, 4, -1}, {1, 123, 605, 1687}, 50] (* Paolo Xausa, Aug 25 2025 *)
-
PARI
a(n)=40*n^3-60*n^2+22*n-1 \\ Charles R Greathouse IV, Oct 19 2022
Formula
a(n) = 40*n^3 - 60*n^2 + 22*n - 1.
G.f.: x*(1+x)*(x^2 + 118*x + 1)/(x-1)^4. - R. J. Mathar, Aug 26 2011
From Elmo R. Oliveira, Aug 22 2025: (Start)
E.g.f.: 1 + exp(x)*(-1 + 2*x + 60*x^2 + 40*x^3).
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n > 4.
Comments