A193262 Number of representations of 2*p_n as sum of two primes p,q such that p*q-2 is prime (p_n is the n-th prime).
1, 1, 2, 2, 1, 3, 1, 1, 2, 2, 0, 3, 0, 2, 3, 4, 2, 1, 3, 4, 2, 0, 4, 2, 5, 2, 2, 5, 2, 2, 5, 2, 4, 1, 0, 1, 2, 0, 8, 3, 0, 2, 2, 5, 3, 0, 1, 5, 7, 1, 3, 1, 2, 4, 5, 5, 1, 0, 3, 2, 4, 3, 4, 2, 3, 3, 1, 3, 2, 0, 8, 3, 4, 3, 0, 9, 1, 6, 0, 2, 5, 2, 2, 9, 1, 5, 4, 3, 1, 7, 5, 2, 4, 2, 1
Offset: 1
Examples
a(4)=2 since 2*p(4) = 14 = 3+11 = 7+7, and 3*11-2 = 31, 7*7-2 = 47 are prime.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A045917.
Programs
-
Maple
a:= proc(n) local t, s, p, q; t:= 2*ithprime(n); s:= 0; p:= 2; do q:= t-p; if q
-
Mathematica
a[n_] := Module[{t = 2 Prime[n], s = 0, p = 2, q}, While[True, q = t - p; If[q < p, Break[]]; If[PrimeQ[q] && PrimeQ[p q - 2], s++]; p = NextPrime[p]]; s]; Array[a, 100] (* Jean-François Alcover, Nov 11 2020, after Alois P. Heinz *)
-
PARI
A193262(n,c=0)={ n=2*prime(n); forprime(p=1,n/2,isprime(n-p) || next; isprime(p*(n-p)-2) & c++);c} \\ M. F. Hasler, Aug 06 2011
Comments