cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A193279 Number of distinct sums of distinct proper divisors of n.

Original entry on oeis.org

0, 1, 1, 3, 1, 6, 1, 7, 3, 7, 1, 16, 1, 7, 7, 15, 1, 21, 1, 22, 7, 7, 1, 36, 3, 7, 7, 28, 1, 42, 1, 31, 7, 7, 7, 55, 1, 7, 7, 50, 1, 54, 1, 31, 27, 7, 1, 76, 3, 31, 7, 31, 1, 66, 7, 64, 7, 7, 1, 108, 1, 7, 29, 63, 7, 78, 1, 31, 7, 72, 1, 123, 1, 7, 31, 31
Offset: 1

Views

Author

Michael Engling, Jul 20 2011

Keywords

Comments

a(n)=1 if and only if n is prime.
a(n)=n-1 if n is a power of 2.
a(n)=n if n is an even perfect number (is the converse true?)
Note: the count excludes an empty subset of proper divisors that would give 0 as a sum. - Antti Karttunen, Mar 07 2018

Crossrefs

Cf. A193280.
Cf. A119347 (allows also n to be included in the sums), A378447 (differences).

Programs

  • Maple
    with(linalg): a:=proc(n) local dl,t: dl:=convert(numtheory[divisors](n) minus {n}, list): t:=nops(dl): return nops({seq(innerprod(dl, convert(2^t+i, base, 2)[1..t]), i=1..2^t-1)}): end: seq(a(n), n=1..76); # Nathaniel Johnston, Jul 23 2011
  • Mathematica
    a[n_] := Module[{d = Most @ Divisors[n], x}, Count[CoefficientList[Product[1 + x^i, {i, d}], x], ?(# > 0 &)] - 1]; Array[a, 100] (* _Amiram Eldar, Jun 13 2020 *)
  • PARI
    \\ Slow and naive:
    A193279(n) = if(1==n,0,my(pds = (divisors(n)[1..(numdiv(n)-1)]), maxsum = vecsum(pds), sums = vector(maxsum), psetsiz = (2^length(pds))-1, k = 0, s); for(i=1,psetsiz,s = vecsum(choosebybits(pds,i)); if(!sums[s],k++;sums[s]++)); (k)); \\ Antti Karttunen, Mar 07 2018
    
  • PARI
    A193279(n) = { my(p=1); fordiv(n, d, if(dAntti Karttunen, Nov 29 2024
    
  • PARI
    A193279(n) = { my(c=[0]); fordiv(n,d, if(dA119347) - Antti Karttunen, Nov 29 2024