A255686 Numbers n such that lambda(sum of odd divisors of Fibonacci(n)) = lambda(sum of even divisors of Fibonacci(n)) where lambda is the Carmichael function (A002322).
3, 9, 12, 15, 18, 21, 27, 33, 39, 45, 51, 63, 69, 87, 93, 111, 123, 135, 141, 153, 159, 177, 189, 201, 219, 225, 237, 249, 255, 267, 291, 303, 309, 321, 339, 363, 381, 393, 411, 423, 453, 459, 501, 537, 543, 573, 579, 633, 669, 699
Offset: 1
Keywords
Examples
18 is in the sequence because A002322(A193293(18)) = A002322(360) = 12 and A002322(A193294(18))= A002322(5040) = 12.
Programs
-
Mathematica
f[x_] := Plus @@ Select[Divisors[Fibonacci[x]], OddQ[#] &]; g[x_] := Plus @@ Select[Divisors[Fibonacci[x]], EvenQ[#]&];Do[If[CarmichaelLambda[f[n]]== CarmichaelLambda[g[n]],Print[n]],{n,1,500}]
-
PARI
a002322(n) = lcm(znstar(n)[2]); isok(n) = my(fn = fibonacci(n)); my(sod = sumdiv(fn, d, d*(d%2))); my(sed = sigma(fn) - sod); sod && sed && (a002322(sod) == a002322(sed)); \\ Michel Marcus, Mar 02 2015
Comments