cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A255686 Numbers n such that lambda(sum of odd divisors of Fibonacci(n)) = lambda(sum of even divisors of Fibonacci(n)) where lambda is the Carmichael function (A002322).

Original entry on oeis.org

3, 9, 12, 15, 18, 21, 27, 33, 39, 45, 51, 63, 69, 87, 93, 111, 123, 135, 141, 153, 159, 177, 189, 201, 219, 225, 237, 249, 255, 267, 291, 303, 309, 321, 339, 363, 381, 393, 411, 423, 453, 459, 501, 537, 543, 573, 579, 633, 669, 699
Offset: 1

Views

Author

Michel Lagneau, Mar 02 2015

Keywords

Comments

Number n such that A002322(A193293(n))= A002322(A193294(n)).
a(n) is divisible by 3, and a majority of numbers a(n)/3 are primes: 3, 5, 7, 11, 13, 17, 23, 29, 31, 37, 41, 47, 53, 59, 67, 73, 79, 83, 89, 97, 101, 103, 107, 113, 127, 131, 137, 151, 167, 179, 181, 191, 193, 211, 223, 233, ... The nonprimes a(n)/3 are 1, 4, 6, 9, 15, 21, 45, 51, 63, 75, 121, 153, ...

Examples

			18 is in the sequence because A002322(A193293(18)) = A002322(360) = 12 and A002322(A193294(18))= A002322(5040) = 12.
		

Crossrefs

Programs

  • Mathematica
    f[x_] := Plus @@ Select[Divisors[Fibonacci[x]], OddQ[#] &]; g[x_] := Plus @@ Select[Divisors[Fibonacci[x]], EvenQ[#]&];Do[If[CarmichaelLambda[f[n]]== CarmichaelLambda[g[n]],Print[n]],{n,1,500}]
  • PARI
    a002322(n) = lcm(znstar(n)[2]);
    isok(n) = my(fn = fibonacci(n)); my(sod = sumdiv(fn, d, d*(d%2))); my(sed = sigma(fn) - sod); sod && sed && (a002322(sod) == a002322(sed)); \\ Michel Marcus, Mar 02 2015
Showing 1-1 of 1 results.