A193314 The smallest k such that the product k*(k+1) is divisible by the first n primes and no others.
1, 2, 5, 14, 384, 1715, 714, 633555
Offset: 1
Keywords
Examples
n smallest k k*(k+1) prime factorization 1 1 2 2 2 2*3 3 5 2*3*5 4 14 2*3*5*7 5 384 2^7*3*5*7*11 6 1715 2^2*3*7^3*11*13 7 714 2*3*5*7*11*13*17 8 633555 2^2*3^3*5*7*11^3*13*17*19^2
Links
- Carlos Rivera, Puzzle 358. Ruth-Aaron pairs revisited, The Prime Puzzles & Problems Connection.
Programs
-
Haskell
a193314 n = head [k | k <- [1..], let kk' = a002378 k, mod kk' (a002110 n) == 0, a006530 kk' == a000040 n] -- Reinhard Zumkeller, Jun 14 2015
-
Mathematica
f[n_] := Block[{k = 1, p = Fold[ Times, 1, Prime@ Range@ n], tst = Prime@ Range@ n},While[ First@ Transpose@ FactorInteger[ k*p]!=tst || IntegerQ@ Sqrt[ 4k*p+1], k++]; Floor@ Sqrt[k*p]]; Array[f, 8] (* the search for a(9), I also used *) lst = {}; p = Prime@ Range@ 9; Do[ q = {a, b, c, d, e, f, g, h, i}; If[ IntegerQ[ Sqrt[4Times @@ (p^q) + 1]], r = Floor@ Sqrt@ Times @@ (p^q); Print@ r; AppendTo[lst, r]], {i, 9}, {h, 9}, {g, 9}, {f, 10}, {e, 11}, {d, 14}, {c, 16}, {b, 24}, {a, 8}]
-
PARI
a(n)={ my(v=[Mod(0,1)],u,P=1,t,g,k); forprime(p=2,prime(n), P*=p; u=List(); for(i=1,#v, listput(u,chinese(v[i],Mod(-1,p))); listput(u,chinese(v[i],Mod(0,p))) ); v=0;v=Vec(u) ); v=vecsort(lift(v)); while(1, for(i=1,#v, t=(v[i]+k)*(v[i]+k+1)/P; if(!t,next); while((g=gcd(P,t))>1, t/=g); if (t==1, return(v[i]+k)) ); k += P ) }; \\ Charles R Greathouse IV, Aug 18 2011
Comments