A193335 Number of odd divisors of sigma(n).
1, 2, 1, 2, 2, 2, 1, 4, 2, 3, 2, 2, 2, 2, 2, 2, 3, 4, 2, 4, 1, 3, 2, 4, 2, 4, 2, 2, 4, 3, 1, 6, 2, 4, 2, 4, 2, 4, 2, 6, 4, 2, 2, 4, 4, 3, 2, 2, 4, 4, 3, 3, 4, 4, 3, 4, 2, 6, 4, 4, 2, 2, 2, 2, 4, 3, 2, 6, 2, 3, 3, 8, 2, 4, 2, 4, 2, 4, 2, 4
Offset: 1
Keywords
Examples
a(8) = 4 because sigma(8) = 15 and the 4 odd divisors are { 1, 3, 5, 15}.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
f[n_] := Block[{d = Divisors[DivisorSigma[1,n]]}, Count[OddQ[d], True]]; Table[f[n], {n, 80}] Table[Count[Divisors[DivisorSigma[1,n]],?OddQ],{n,80}] (* _Harvey P. Dale, Jul 06 2019 *) odd[n_] := DivisorSigma[0, n / 2^IntegerExponent[n, 2]]; a[n_] := odd[DivisorSigma[1, n]]; Array[a, 100] (* Amiram Eldar, Jul 06 2022 *)
-
PARI
a(n)=sumdiv(sigma(n,1),d,d%2);
-
PARI
a(n)=n=sigma(n);numdiv(n>>valuation(n,2)) \\ Charles R Greathouse IV, Jul 30 2011