A193399 Wiener index of a benzenoid consisting of a chain of n hexagons characterized by the encoding s = 1133 (see the Gutman et al. reference, Sec. 5).
27, 109, 271, 545, 931, 1493, 2199, 3145, 4267, 5693, 7327, 9329, 11571, 14245, 17191, 20633, 24379, 28685, 33327, 38593, 44227, 50549, 57271, 64745, 72651, 81373, 90559, 100625, 111187, 122693, 134727
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..10000
- A. A. Dobrynin, I. Gutman, S. Klavzar, P. Zigert, Wiener Index of Hexagonal Systems, Acta Applicandae Mathematicae 72 (2002), pp. 247-294.
- I. Gutman, S. Klavzar, M. Petkovsek, and P. Zigert, On Hosoya polynomials of benzenoid graphs, Comm. Math. Comp. Chem. (MATCH), 43, 2001, 49-66.
- Index entries for linear recurrences with constant coefficients, signature (2,1,-4,1,2,-1).
Crossrefs
Programs
-
Magma
[4*n^3 + 16*n^2 + 8*n + 2*(-1)^n*(n - 2) - 3: n in [1..40]]; // Vincenzo Librandi, Jul 26 2011
-
Maple
a := proc (n) options operator, arrow: 4*n^3+16*n^2+8*n+2*(-1)^n*(n-2)-3 end proc: seq(a(n), n = 1 .. 40);
-
PARI
a(n)=4*n^3+16*n^2+8*n+2*(-1)^n*(n-2)-3 \\ Charles R Greathouse IV, Jul 28 2011
Formula
a(n) = 4*n^3 + 16*n^2 + 8*n + 2*(-1)^n*(n - 2) - 3.
G.f.: x*(27 + 55*x + 26*x^2 + 2*x^3 - 21*x^4 + 7*x^5)/((1+x)^2*(1-x)^4). - Bruno Berselli, Jul 27 2011