A193436 exp( Sum_{n>=1} x^n/n^3 ) = Sum_{n>=0} a(n)*x^n/n!^3.
1, 1, 5, 71, 2276, 144724, 16688884, 3249507820, 1005334796864, 468967172341824, 315409074574480704, 294510517409159769024, 369877735410388416241920, 608401340784471133062837504, 1281569707473914769353921666304, 3391681347749396029674738480747264
Offset: 0
Keywords
Examples
A(x) = 1 + x + 5*x^2/2!^3 + 71*x^3/3!^3 + 2276*x^4/4!^3 +... where log(A(x)) = x + x^2/8 + x^3/27 + x^4/64 + x^5/125 + x^6/216 +...
Programs
-
PARI
{a(n)=n!^3*polcoeff(exp(sum(m=1,n,x^m/m^3)+x*O(x^n)),n)}
Formula
a(0) = 1; a(n) = (n-1)! * (n!)^2 * Sum_{k=0..n-1} a(k) / ((k!)^3 * (n-k)^2). - Ilya Gutkovskiy, Jul 18 2020
Comments