cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A193441 E.g.f.: exp( Sum_{n>=1} n!^2*x^(2*n)/(2*n)! ) = Sum_{n>=0} a(n)*x^(2*n)/(2*n)!.

Original entry on oeis.org

1, 1, 7, 111, 3089, 131985, 7977687, 645443295, 67165412385, 8722553971041, 1380689271177255, 261365482010524815, 58252017195624969009, 15086874107373899187825, 4490370671139664566269175, 1521257907398602231501780095, 581762614758928225569542394945
Offset: 0

Views

Author

Paul D. Hanna, Jul 25 2011

Keywords

Comments

Sum_{n>=0} a(n)/(2*n)! = exp(1/3 + 2*sqrt(3)*Pi/27) = 2.08840341696864282...

Examples

			E.g.f.: A(x) = 1 + x^2/2! + 7*x^4/4! + 111*x^6/6! + 3089*x^8/8! + 131985*x^10/10! + 7977687*x^12/12! +...+ a(n)*x^(2*n)/(2*n)! +...
where
log(A(x)) = x^2/2 + x^4/6 + x^6/20 + x^8/70 + x^10/252 + x^12/924 + x^14/3432 + x^16/12870 +...+ x^(2*n)/A000984(n) +...
In closed form,
log(A(x)) = x^2/(4-x^2) + 4*x*arctan(x/sqrt(4-x^2))/sqrt((4-x^2)^3).
		

Crossrefs

Cf. A193442, A193443, A193444, A000984 (C(2*n,n)).

Programs

  • PARI
    {a(n)=(2*n)!*polcoeff(exp(sum(m=1,n,x^(2*m)/binomial(2*m,m))+O(x^(2*n+1))),2*n)}
    
  • PARI
    /* Using formula for e.g.f. = exp(L(x)): */
    {a(n)=local(Ox=O(x^(2*n+1)), L=x^2/(4-x^2 +Ox) + 4*x*atan(x/sqrt(4-x^2 +Ox))/sqrt((4-x^2 +Ox)^3)); (2*n)!*polcoeff(exp(L), 2*n)}

Formula

E.g.f.: exp(L(x)) = Sum_{n>=0} a(n)*x^(2*n)/(2*n)!,
where L(x) = x^2/(4-x^2) + 4*x*arctan(x/sqrt(4-x^2))/sqrt((4-x^2)^3)
from a formula given in the Sprugnoli link.

A193442 E.g.f.: exp( Sum_{n>=1} x^(2*n)/A000108(n) ) = Sum_{n>=0} a(n)*x^(2*n)/(2*n)!, where A000108 is the Catalan numbers.

Original entry on oeis.org

1, 2, 24, 624, 27744, 1857600, 173256192, 21357471744, 3350185712640, 649812612225024, 152385461527633920, 42429768718712094720, 13819620038445598408704, 5199913478124022299033600, 2236448840442614178722611200, 1089467246881095674146487009280
Offset: 0

Views

Author

Paul D. Hanna, Jul 25 2011

Keywords

Comments

Sum_{n>=0} a(n)/(2*n)! = exp(1 + 4*sqrt(3)*Pi/27) = 6.08686426907670...

Examples

			E.g.f.: A(x) = 1 + 2*x^2/2! + 24*x^4/4! + 624*x^6/6! + 27744*x^8/8! + 1857600*x^10/10! + 173256192*x^12/12! +...+ a(n)*x^(2*n)/(2*n)! +...
where
log(A(x)) = x^2 + x^4/2 + x^6/5 + x^8/14 + x^10/42 + x^12/132 + x^14/429 + x^16/1430 +...+ (n+1)*x^(2*n)/C(2*n,n) +...
		

Crossrefs

Programs

  • PARI
    {a(n)=(2*n)!*polcoeff(exp(sum(m=1,n,(m+1)*x^(2*m)/binomial(2*m,m))+O(x^(2*n+1))),2*n)}
    
  • PARI
    /* Using formula for e.g.f. = exp(L(x)): */
    {a(n)=local(Ox=O(x^(2*n+1)), L=-1 + 2*(8+x^2)/(4-x^2 +Ox)^2 + 24*x*atan(x/sqrt(4-x^2 +Ox))/sqrt((4-x^2 +Ox)^5)); (2*n)!*polcoeff(exp(L), 2*n)}

Formula

E.g.f.: exp(L(x)) = Sum_{n>=0} a(n)*x^(2*n)/(2*n)!,
where L(x) = -1 + 2*(8+x^2)/(4-x^2)^2 + 24*x*atan(x/sqrt(4-x^2))/sqrt((4-x^2)^5) from a formula given in A121839.
Showing 1-2 of 2 results.