A193446 a(n) = n! * Sum_{k=1..n-1} H(k)*H(n-k) for n>=2, where H(n) is the n-th harmonic number.
2, 18, 142, 1160, 10208, 97720, 1018008, 11507472, 140581872, 1848236544, 26041957632, 391738883328, 6268657962240, 106361504663040, 1907768564282880, 36075270482058240, 717379367864693760, 14967427450111488000, 326956068509511168000, 7463341244426167296000
Offset: 2
Keywords
Examples
E.g.f.: log(1-x)^2/(1-x)^2 = 2*x^2/2! + 18*x^3/3! + 142*x^4/4! + 1160*x^5/5! + ... Illustration of initial terms: a(2) = 2!*(1*1) = 2; a(3) = 3!*(1*(1+1/2) + (1+1/2)*1) = 18; a(4) = 4!*(1*(1+1/2+1/3) + (1+1/2)*(1+1/2) + (1+1/2+1/3)*1) = 142; a(5) = 5!*(1*(1+1/2+1/3+1/4) + (1+1/2)*(1+1/2+1/3) + (1+1/2+1/3)*(1+1/2) + (1+1/2+1/3+1/4)*1) = 1160; ...
Links
- Eric Weisstein's World of Mathematics, Harmonic Number.
Programs
-
Mathematica
a[n_] := n! * Sum[HarmonicNumber[k] * HarmonicNumber[n-k], {k, 1, n-1}]; Array[a, 20, 2] (* Amiram Eldar, Aug 18 2023 *)
-
PARI
{a(n)=if(n<2,0,n!*sum(k=1,n,sum(i=1,k,1/i)*sum(j=1,n-k,1/j)))}
-
PARI
{a(n)=if(n<0,0,n!*polcoeff(log(1-x+x*O(x^n))^2/(1-x+x*O(x^n))^2,n))}
Formula
E.g.f.: log(1 - x)^2 / (1 - x)^2.
a(n) = n! * Sum_{k=1..n-1} (Sum_{i=1..k} 1/i)*(Sum_{j=1..n-k} 1/j) for n>=2.
Extensions
a(21) from Amiram Eldar, Aug 18 2023
Comments