cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A193449 Products of the Jacobsthal numbers and the integers: a(n) = n * A001045(n+1).

Original entry on oeis.org

0, 1, 6, 15, 44, 105, 258, 595, 1368, 3069, 6830, 15015, 32772, 70993, 152922, 327675, 699056, 1485477, 3145734, 6640975, 13981020, 29360121, 61516466, 128625315, 268435464, 559240525, 1163220318, 2415919095, 5010795188, 10379504289, 21474836490, 44381328715
Offset: 0

Views

Author

Olivier Gérard, Jul 26 2011

Keywords

Comments

a(n) = n * A001045(n+1).
This sequence is the sum of several triangles of integers (see formula section)

Crossrefs

Cf. A001045, Equals second column of A124860, equals sum of A193450 or A193451.

Programs

  • Magma
    [n*(2^(n + 1) + (-1)^n)/3: n in [0..35]]; // Vincenzo Librandi, Oct 21 2012
    
  • Mathematica
    Table[Sum[n Binomial[n, k] HypergeometricPFQ[{1, -k}, {-n}, -1], {k, 0, n}], {n, 0, 35}]
    CoefficientList[Series[(x*(1 + 4*x))/(2*x^2 + x - 1)^2, {x, 0, 100}], x] (* Vincenzo Librandi, Oct 21 2012 *)
  • Python
    def A193449(n): return (((1<Chai Wah Wu, Apr 18 2025

Formula

G.f.: x*(1 + 4*x)/( 2*x^2+x-1)^2
a(n) = n*(2^(n + 1) + (-1)^n)/3
a(n)= sum( sum( (-1)^(j+k)*(j+k)*C(n-k+j,j), j=0..k), k=0..n)
a(n)= sum( n*C(n, k)*2F1( (1, -k); -n )(-1), k=0..n)
a(n)= sum( sum( (-1)^j*n*C(n-j,k-j), j=0..k), k=0..n)
a(n)= sum( (1+2*k)*C(n+1, k+1)*2F1( (1, n+2); k+2 )(-1) - C(n+2, k+2) 2F1( (2, n+3); k+3 )(-1) - (-1)^(k) * 2^(k-n-2) * (n-3*k+1) , k=0..n) with C(n,k) the binomial coefficient and 2F1( ) the hypergeometric function.