A193456 Paradigm shift sequence with procedure length p=4.
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 16, 20, 25, 30, 36, 42, 49, 56, 64, 80, 100, 125, 150, 180, 216, 252, 294, 343, 400, 500, 625, 750, 900, 1080, 1296, 1512, 1764, 2058, 2500, 3125, 3750, 4500, 5400, 6480, 7776, 9072, 10584, 12500, 15625, 18750, 22500, 27000
Offset: 1
Keywords
Examples
For n = 18, a(18) uses the general formula given for n in [1:67], but uses C=2 (rather than C=3). m = floor(22/2)-4 = 7; R = 22 mod 2 = 0; therefore a(18) = 7^(2-0)*8^0 = 49 For n=37, a(37) has: C = floor(39/10) +1 = 3+1=4. m = floor(41/4)-4 = 10-4=6, R = 41 mod 4 = 1; therefore, a(37) = 6^(4-1)*7^(1) = 6^3 *7 = 1512.
Links
- Jonathan T. Rowell, Solution Sequences for the Keyboard Problem and its Generalizations, Journal of Integer Sequences, Vol. 18 (2015), Article 15.10.7.
Crossrefs
Formula
a(n) =
a(8:10) = 8; 9; 10 [C=1 below]
a(18:20) = 49; 56; 88 [C=2 below]
a(28:29) = 294; 343 [C=3 below]
a(38:39) = 1764; 2058 [C=4 below]
a(48) = 10584 [C=5 below]
a(58) = 63504 [C=6 below]
a(1:67) = m^(C-R) * (m+1)^R
where C = floor((n+2)/10) +1 [min C=1]
m = floor ((n+4)/C)-4, and R = n+4 mod C
a(n>=68) = 5^b * 6^(C-b-d) * 7^d
where C = floor((n+2)/10) +1
R = n+2 mod 10
b = max(0, 8-R); d = max(0, R-8)
Recursive: for n>=69, a(n)=6*a(n-10)
Comments