cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A000792 a(n) = max{(n - i)*a(i) : i < n}; a(0) = 1.

Original entry on oeis.org

1, 1, 2, 3, 4, 6, 9, 12, 18, 27, 36, 54, 81, 108, 162, 243, 324, 486, 729, 972, 1458, 2187, 2916, 4374, 6561, 8748, 13122, 19683, 26244, 39366, 59049, 78732, 118098, 177147, 236196, 354294, 531441, 708588, 1062882, 1594323, 2125764, 3188646, 4782969, 6377292
Offset: 0

Views

Author

Keywords

Comments

Numbers of the form 3^k, 2*3^k, 4*3^k with a(0) = 1 prepended.
If a set of positive numbers has sum n, this is the largest value of their product.
In other words, maximum of products of partitions of n: maximal value of Product k_i for any way of writing n = Sum k_i. To find the answer, take as many of the k_i's as possible to be 3 and then use one or two 2's (see formula lines below).
a(n) is also the maximal size of an Abelian subgroup of the symmetric group S_n. For example, when n = 6, one of the Abelian subgroups with maximal size is the subgroup generated by (123) and (456), which has order 9. [Bercov and Moser] - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 19 2001
Also the maximum number of maximal cliques possible in a graph with n vertices (cf. Capobianco and Molluzzo). - Felix Goldberg (felixg(AT)tx.technion.ac.il), Jul 15 2001 [Corrected by Jim Nastos and Tanya Khovanova, Mar 11 2009]
Every triple of alternate terms {3*k, 3*k+2, 3*k+4} in the sequence forms a geometric progression with first term 3^k and common ratio 2. - Lekraj Beedassy, Mar 28 2002
For n > 4, a(n) is the least multiple m of 3 not divisible by 8 for which omega(m) <= 2 and sopfr(m) = n. - Lekraj Beedassy, Apr 24 2003
Maximal number of divisors that are possible among numbers m such that A080256(m) = n. - Lekraj Beedassy, Oct 13 2003
Or, numbers of the form 2^p*3^q with p <= 2, q >= 0 and 2p + 3q = n. Largest number obtained using only the operations +,* and () on the parts 1 and 2 of any partition of n into these two summands where the former exceeds the latter. - Lekraj Beedassy, Jan 07 2005
a(n) is the largest number of complexity n in the sense of A005520 (A005245). - David W. Wilson, Oct 03 2005
a(n) corresponds also to the ultimate occurrence of n in A001414 and thus stands for the highest number m such that sopfr(m) = n, for n >= 2. - Lekraj Beedassy, Apr 29 2002
a(n) for n >= 1 is a paradigm shift sequence with procedural length p = 0, in the sense of A193455. - Jonathan T. Rowell, Jul 26 2011
a(n) = largest term of n-th row in A212721. - Reinhard Zumkeller, Jun 14 2012
For n >= 2, a(n) is the largest number whose prime divisors (with multiplicity) add to n, whereas the smallest such number (resp. smallest composite number) is A056240(n) (resp. A288814(n)). - David James Sycamore, Nov 23 2017
For n >= 3, a(n+1) = a(n)*(1 + 1/s), where s is the smallest prime factor of a(n). - David James Sycamore, Apr 10 2018

Examples

			a{8} = 18 because we have 18 = (8-5)*a(5) = 3*6 and one can verify that this is the maximum.
a(5) = 6: the 7 partitions of 5 are (5), (4, 1), (3, 2), (3, 1, 1), (2, 2, 1), (2, 1, 1, 1), (1, 1, 1, 1, 1) and the corresponding products are 5, 4, 6, 3, 4, 2 and 1; 6 is the largest.
G.f. = 1 + x + 2*x^2 + 3*x^3 + 4*x^4 + 6*x^5 + 9*x^6 + 12*x^7 + 18*x^8 + ...
		

References

  • B. R. Barwell, Cutting String and Arranging Counters, J. Rec. Math., 4 (1971), 164-168.
  • B. R. Barwell, Journal of Recreational Mathematics, "Maximum Product": Solution to Prob. 2004;25(4) 1993, Baywood, NY.
  • M. Capobianco and J. C. Molluzzo, Examples and Counterexamples in Graph Theory, p. 207. North-Holland: 1978.
  • S. L. Greitzer, International Mathematical Olympiads 1959-1977, Prob. 1976/4 pp. 18;182-3 NML vol. 27 MAA 1978
  • J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 396.
  • P. R. Halmos, Problems for Mathematicians Young and Old, Math. Assoc. Amer., 1991, pp. 30-31 and 188.
  • L. C. Larson, Problem-Solving Through Problems. Problem 1.1.4 pp. 7. Springer-Verlag 1983.
  • D. J. Newman, A Problem Seminar. Problem 15 pp. 5;15. Springer-Verlag 1982.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

See A007600 for a left inverse.
Cf. array A064364, rightmost (nonvanishing) numbers in row n >= 2.
See A056240 and A288814 for the minimal numbers whose prime factors sums up to n.
A000792, A178715, A193286, A193455, A193456, and A193457 are closely related as paradigm shift sequences for (p = 0, ..., 5 respectively).
Cf. A202337 (subsequence).

Programs

  • Haskell
    a000792 n = a000792_list !! n
    a000792_list = 1 : f [1] where
       f xs = y : f (y:xs) where y = maximum $ zipWith (*) [1..] xs
    -- Reinhard Zumkeller, Dec 17 2011
    
  • Magma
    I:=[1,1,2,3,4]; [n le 5 select I[n] else 3*Self(n-3): n in [1..45]]; // Vincenzo Librandi, Apr 14 2015
  • Maple
    A000792 := proc(n)
        m := floor(n/3) ;
        if n mod 3 = 0 then
            3^m ;
        elif n mod 3 = 1 then
            4*3^(m-1) ;
        else
            2*3^m ;
        end if;
        floor(%) ;
    end proc: # R. J. Mathar, May 26 2013
  • Mathematica
    a[1] = 1; a[n_] := 4* 3^(1/3 *(n - 1) - 1) /; (Mod[n, 3] == 1 && n > 1); a[n_] := 2*3^(1/3*(n - 2)) /; Mod[n, 3] == 2; a[n_] := 3^(n/3) /; Mod[n, 3] == 0; Table[a[n], {n, 0, 40}]
    CoefficientList[Series[(1 + x + 2x^2 + x^4)/(1 - 3x^3), {x, 0, 50}], x] (* Harvey P. Dale, May 01 2011 *)
    f[n_] := Max[ Times @@@ IntegerPartitions[n, All, Prime@ Range@ PrimePi@ n]]; f[1] = 1; Array[f, 43, 0] (* Robert G. Wilson v, Jul 31 2012 *)
    a[ n_] := If[ n < 2, Boole[ n > -1], 2^Mod[-n, 3] 3^(Quotient[ n - 1, 3] + Mod[n - 1, 3] - 1)]; (* Michael Somos, Jan 23 2014 *)
    Join[{1, 1}, LinearRecurrence[{0, 0, 3}, {2, 3, 4}, 50]] (* Jean-François Alcover, Jan 08 2019 *)
    Join[{1,1},NestList[#+Divisors[#][[-2]]&,2,41]] (* James C. McMahon, Aug 09 2024 *)
  • PARI
    {a(n) = floor( 3^(n - 4 - (n - 4) \ 3 * 2) * 2^( -n%3))}; /* Michael Somos, Jul 23 2002 */
    
  • PARI
    lista(nn) = {print1("1, 1, "); print1(a=2, ", "); for (n=1, nn, a += a/divisors(a)[2]; print1(a, ", "););} \\ Michel Marcus, Apr 14 2015
    
  • PARI
    A000792(n)=if(n>1,3^((n-2)\3)*(2+(n-2)%3),1) \\ M. F. Hasler, Jan 19 2019
    

Formula

G.f.: (1 + x + 2*x^2 + x^4)/(1 - 3*x^3). - Simon Plouffe in his 1992 dissertation.
a(3n) = 3^n; a(3*n+1) = 4*3^(n-1) for n > 0; a(3*n+2) = 2*3^n.
a(n) = 3*a(n-3) if n > 4. - Henry Bottomley, Nov 29 2001
a(n) = n if n <= 2, otherwise a(n-1) + Max{gcd(a(i), a(j)) | 0 < i < j < n}. - Reinhard Zumkeller, Feb 08 2002
A007600(a(n)) = n; Andrew Chi-Chih Yao attributes this observation to D. E. Muller. - Vincent Vatter, Apr 24 2006
a(n) = 3^(n - 2 - 2*floor((n - 1)/3))*2^(2 - (n - 1) mod 3) for n > 1. - Hieronymus Fischer, Nov 11 2007
From Kiyoshi Akima (k_akima(AT)hotmail.com), Aug 31 2009: (Start)
a(n) = 3^floor(n/3)/(1 - (n mod 3)/4), n > 1.
a(n) = 3^(floor((n - 2)/3))*(2 + ((n - 2) mod 3)), n > 1. (End)
a(n) = (2^b)*3^(C - (b + d))*(4^d), n > 1, where C = floor((n + 1)/3), b = max(0, ((n + 1) mod 3) - 1), d = max(0, 1 - ((n + 1) mod 3)). - Jonathan T. Rowell, Jul 26 2011
G.f.: 1 / (1 - x / (1 - x / (1 + x / (1 - x / (1 + x / (1 + x^2 / (1 + x))))))). - Michael Somos, May 12 2012
3*a(n) = 2*a(n+1) if n > 1 and n is not divisible by 3. - Michael Somos, Jan 23 2014
a(n) = a(n-1) + largest proper divisor of a(n-1), n > 2. - Ivan Neretin, Apr 13 2015
a(n) = max{a(i)*a(n-i) : 0 < i < n} for n >= 4. - Jianing Song, Feb 15 2020
a(n+1) = a(n) + A038754(floor( (2*(n-1) + 1)/3 )), for n > 1. - Thomas Scheuerle, Oct 27 2022

Extensions

More terms and better description from Therese Biedl (biedl(AT)uwaterloo.ca), Jan 19 2000

A178715 a(n) = solution to the "Select All, Copy, Paste" problem: Given the ability to type a single letter, or to type individual "Select All", "Copy" or "Paste" command keystrokes, what is the maximal number of letters of text that can be obtained with n keystrokes?

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 9, 12, 16, 20, 27, 36, 48, 64, 81, 108, 144, 192, 256, 324, 432, 576, 768, 1024, 1296, 1728, 2304, 3072, 4096, 5184, 6912, 9216, 12288, 16384, 20736, 27648, 36864, 49152, 65536, 82944, 110592, 147456, 196608, 262144, 331776, 442368, 589824, 786432, 1048576, 1327104, 1769472, 2359296, 3145728, 4194304
Offset: 1

Views

Author

Bill Blewett, Jan 11 2011

Keywords

Comments

It is assumed that we start with a single letter in the copy buffer.
Alternatively, a(n-1) = maximal value of Product (k_i-1) for any way of writing n = Sum k_i.
1. The description above assumes that the text is deselected after the Copy command is invoked.
2. This sequence is the solution to the equivalent problem formulated as {insert, "Select All+ Copy" macro (without deselection), Paste}.
3. This sequence is a "paradigm-shift" sequence with procedure length p =1 (in the sense of A193455).
4. The optimal number of pastes per copy, as measured by the geometric growth rate (p+z root of z), is z = 4. [noninteger maximum between 3 and 4]
5. The function a(n) = maximum value of the product of the terms k_i, where Sum (k_i) = n+1-i_max.
6. All solutions will be of the form a(n) = m^b * (m+1)^d.

Examples

			For n = 7 the a(7) = 9 solution is to type the seven keystrokes: paste, paste, paste, select-all, copy, paste paste which yields nine text characters.
Here is a table showing the pattern for n = 1 to 35. The first column is n and the second column is the number of characters that can be obtained with n keystrokes.  The remainder of the line shows how to get the maximum, as follows.  S = Select and C = Copy while a dot stands for Paste.  The dots at the beginning of a line are equivalent to a single letter being typed, based on the assumption that at the start there is a single letter in the paste buffer.
01: 00001 .
02: 00002 ..
03: 00003 ...
04: 00004 ....
05: 00005 .....
06: 00006 ......
07: 00009 ...SC..
08: 00012 ....SC..
09: 00016 ....SC...
10: 00020 .....SC...
11: 00027 ...SC..SC..
12: 00036 ....SC..SC..
13: 00048 ....SC...SC..
14: 00064 ....SC...SC...
15: 00081 ...SC..SC..SC..
16: 00108 ....SC..SC..SC..
17: 00144 ....SC...SC..SC..
18: 00192 ....SC...SC...SC..
19: 00256 ....SC...SC...SC...
20: 00324 ....SC..SC..SC..SC..
21: 00432 ....SC...SC..SC..SC..
22: 00576 ....SC...SC...SC..SC..
23: 00768 ....SC...SC...SC...SC..
24: 01024 ....SC...SC...SC...SC...
25: 01296 ....SC...SC..SC..SC..SC..
26: 01728 ....SC...SC...SC..SC..SC..
27: 02304 ....SC...SC...SC...SC..SC..
28: 03072 ....SC...SC...SC...SC...SC..
29: 04096 ....SC...SC...SC...SC...SC...
30: 05184 ....SC...SC...SC..SC..SC..SC..
31: 06912 ....SC...SC...SC...SC..SC..SC..
32: 09216 ....SC...SC...SC...SC...SC..SC..
33: 12288 ....SC...SC...SC...SC...SC...SC..
34: 16384 ....SC...SC...SC...SC...SC...SC...
35: 20736 ....SC...SC...SC...SC..SC..SC..SC..
It appears that A000792 is the result if only one keystroke instead of two is required for the "Select All, Copy" operation.  Here is the table.  Here "C" means that all the previously typed characters are copied to the paste buffer.
01: 00001 .
02: 00002 ..
03: 00003 ...
04: 00004 ....
05: 00006 ...C.
06: 00009 ...C..
07: 00012 ....C..
08: 00018 ...C..C.
09: 00027 ...C..C..
10: 00036 ....C..C..
11: 00054 ...C..C..C.
12: 00081 ...C..C..C..
13: 00108 ....C..C..C..
14: 00162 ...C..C..C..C.
15: 00243 ...C..C..C..C..
16: 00324 ....C..C..C..C..
17: 00486 ...C..C..C..C..C.
18: 00729 ...C..C..C..C..C..
19: 00972 ....C..C..C..C..C..
20: 01458 ...C..C..C..C..C..C.
21: 02187 ...C..C..C..C..C..C..
22: 02916 ....C..C..C..C..C..C..
23: 04374 ...C..C..C..C..C..C..C.
24: 06561 ...C..C..C..C..C..C..C..
25: 08748 ....C..C..C..C..C..C..C..
26: 13122 ...C..C..C..C..C..C..C..C.
27: 19683 ...C..C..C..C..C..C..C..C..
28: 26244 ....C..C..C..C..C..C..C..C..
29: 39366 ...C..C..C..C..C..C..C..C..C.
30: 59049 ...C..C..C..C..C..C..C..C..C..
31: 78732 ....C..C..C..C..C..C..C..C..C..
		

Crossrefs

See A193286 for another version. Cf. A000792.
A000792, A178715, A193286, A193455, A193456, and A193457 are paradigm shift sequences with procedure lengths p=0,1,...,5, respectively.
Cf. A367116 (squares summing to n).

Programs

  • Mathematica
    LinearRecurrence[{0,0,0,0,4},{1,2,3,4,5,6,9,12,16,20,27,36,48,64,81},60] (* Harvey P. Dale, Apr 11 2017 *)
  • PARI
    Vec(x*(1 +2*x +3*x^2 +4*x^3 +5*x^4 +2*x^5 +x^6 +3*x^10 +x^14) / (1 -4*x^5) + O(x^100)) \\ Colin Barker, Nov 19 2016
    
  • Python
    def a(n):
        c=(n//5) + 1
        if n<15:
            if n==5: return 5
            if n==10: return 20
            r=(n + 1)%c
            q=((n + 1)//c) - 1
            return q**(c - r)*(q + 1)**r
        else:
            r=n%5
            return 3**(4 - r)*4**(c - 4 + r)
    print([a(n) for n in range(1, 102)]) # Indranil Ghosh, Jun 27 2017

Formula

a(n) = 4*a(n-5) for n>=16.
a(n) =
a(5;10) = 5; 20 [C=1, 2 below, respectively]
a(n=1:14) = Q^(C-R)*(Q+1)^R
where C = floor(n/5)+1, R = n+1 mod C,
and Q = floor(n+1/C)-1
a(n>=15) = 3^(4-R)*4^(C-4+R)
where C = floor (n/5)+1, R = n mod 5.
G.f.: x*(1 +2*x +3*x^2 +4*x^3 +5*x^4 +2*x^5 +x^6 +3*x^10 +x^14) / (1 -4*x^5). - Colin Barker, Nov 19 2016

Extensions

Edited by N. J. A. Sloane, Jul 21 2011
Additional comment and formula from David Applegate, Jul 21 2011
Additional comments, formulas, and CrossRefs by Jonathan T. Rowell, Jul 30 2011
More terms from Joerg Arndt, Nov 15 2014

A193286 a(n) is the maximal number of a's that can be produced in a blank document with n "keystrokes".

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 9, 12, 16, 20, 25, 30, 36, 48, 64, 80, 100, 125, 150, 192, 256, 320, 400, 500, 625, 768, 1024, 1280, 1600, 2000, 2500, 3125, 4096, 5120, 6400, 8000, 10000, 12500, 16384, 20480, 25600, 32000, 40000, 50000, 65536, 81920, 102400, 128000, 160000, 200000, 262144, 327680
Offset: 1

Views

Author

N. J. A. Sloane, Jul 20 2011

Keywords

Comments

A "keystroke" means one of the following:
a (i.e., hit the letter "a" on the keyboard)
Ctrl-a ("select all")
Ctrl-c (copy selected text to clipboard)
Ctrl-v (paste from clipboard to cursor location)
Alternatively, a(n-2) = maximal value of Product (k_i-2) for any way of writing n = Sum k_i
1. Note that the copy command does not deselect the text.
2. This sequence is a "paradigm-shift" sequence with procedure length p =2 (in the sense of A193455).
3. The optimal number of pastes per copy, as measured by the geometric growth rate (p+z root of z), is z = 4. [Non-integer maximum between 4 and 5.]
4. The function a(n) = maximum value of the product of the terms k_i, where Sum (k_i) = n + 2 - 2*i_max.
5. All solutions will be of the form a(n) = m^b * (m+1)^d.

Examples

			For n=25, C = floor(28/6) = 4, R = (27 mod 4) = 3, and Q = floor(27/4)-2 = 4; therefore, a(25) = 4^(4-3)*5^(3) = 4*5^3 = 500.
For n=9, we use the general solution, but with C=2 (rather than C=1). R=(11 mod 2)=1, Q=3, and a(9)=3^(2-1)*4^1 = 12.
		

Crossrefs

See A178715 for another version. Cf. A000792.
A000792, A178715, A193286, A193455, A193456, and A193457 are paradigm shift sequences of procedure lengths p=0,1,...,5, respectively.

Programs

  • Haskell
    -- See Theorem 5 in John Derbyshire link.
    a193286 n = p n [] where
       p 0 ks       = product ks
       p n []       = p (n-1) [1]
       p n (k:ks)
        | n < 0     = 0
        | otherwise = max (p (n-1) ((k+1):ks)) (p (n-3) (1:k:ks))
    -- Reinhard Zumkeller, Jul 22 2011, Jul 21 2011
    
  • Mathematica
    a[n_ /; 1 <= n <= 7] := n; a[8] = 9; a[n_ /; 9 <= n <= 27] := (c = Max[1, Floor[(n+3)/6]]; r = Mod[n+2, c]; q = Floor[(n+2)/c]-2;q^(c-r)*(q+1)^r);a[n_ /; n >= 28] := ({q, r} = QuotientRemainder[n+2, 6]; 4^(q-r)*5^r);Table[a[n], {n, 1, 60}] (* Jean-François Alcover, May 28 2015 *)
  • Python
    def a(n):
        if n<8: return n
        elif n==8: return 9
        elif n>8 and n<=27:
            c=max(1, ((n + 3)//6))
            r=(n + 2)%c
            q=((n + 2)//c) - 2
            return q**(c - r)*(q + 1)**r
        else:
            q=((n + 2)//6)
            r=(n + 2)%6
            return 4**(q - r)*5**r
    print([a(n) for n in range(1, 101)]) # Indranil Ghosh, Jun 27 2017, after Mathematica code

Formula

a(n) = 4*a(n-6) for n >= 34. [corrected by Georg Fischer, Jun 09 2022]
a(n) = a(8;9;15;21;27) = 9; 12; 48; 192; 768 - corresponding to [C=2;2;3;4;5 below].
a(n=9..27) = Q^(C-R) * (Q+1)^R where C = floor((n+3)/6) [minimum value 1], R = (n+2) mod C, and Q = floor((n+2)/C)-2.
a(n>=28) = 4^(C-R) * 5^R, where C = floor((n+2)/6), R = (n+2) mod 6.

Extensions

Additional comment and formula from David Applegate, Jul 21 2011
More terms from Reinhard Zumkeller, Jul 22 2011, Jul 21 2011
Additional comments, formulas, examples and CrossRefs from Jonathan T. Rowell, Jul 30 2011

A246099 Paradigm shift sequence for (4,5) production scheme with replacement.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60, 64, 68, 72, 76, 80, 84, 88, 92, 96, 100, 108, 117, 126, 135, 144, 153, 162, 171, 180, 192, 204, 216, 228, 240, 256, 272, 288, 304, 320, 336, 352, 378, 405, 432, 459, 486, 513, 540, 576, 612, 648, 684, 720, 768, 816, 864, 912, 960, 1024, 1088, 1152, 1216, 1296, 1377, 1458, 1539, 1620, 1728, 1836, 1944, 2052, 2160, 2304, 2448, 2592, 2736, 2880, 3072, 3264, 3456, 3648, 3888, 4131, 4374, 4617, 4864, 5184, 5508, 5832, 6156, 6480, 6912, 7344, 7776, 8208, 8640, 9216, 9792, 10368, 10944, 11664, 12393, 13122, 13851, 14592, 15552, 16524, 17496, 18468, 19456, 20736, 22032, 23328
Offset: 1

Views

Author

Jonathan T. Rowell, Aug 13 2014

Keywords

Comments

This sequence is the solution to the following problem: "Suppose you have the choice of using one of three production options: apply a simple incremental action, bundle existing output as an integrated product (which requires p=4 steps), or implement the current bundled action (which requires q=5 steps). The first use of a novel bundle erases (or makes obsolete) all prior actions. How large an output can be generated in n time steps?"
1. A production scheme with replacement R(p,q) eliminates existing output following a bundling action, while an additive scheme A(p,q) retains the output. The schemes correspond according to A(p,q)=R(p-q,q), with the replacement scheme serving as the default presentation.
2. This problem is structurally similar to the Copy and Paste Keyboard problem: Existing sequences (A178715 and A193286) should be regarded as Paradigm-Shift Sequences with production schemes R(1,1) and R(2,1) with replacement, respectively.
3. The ideal number of implementations per bundle, as measured by the geometric growth rate (p+zq root of z), is z = 3.
4. All solutions will be of the form a(n) = (qm+r) * m^b * (m+1)^d.
5. The optimal action string that generates this integer sequence (x=a^k PV^m ...) has inversions in the minimum number of bundling procedures P. These inversions are persistent as they are present when the recursive formula for the output first holds.

Crossrefs

Paradigm shift sequences for q=5: A103969, A246074, A246075, A246076, A246079, A246083, A246087, A246091, A246095, A246099, A246103.
Paradigm shift sequences for q=4: A193456, A246096, A246097, A246098, A246099.

Formula

a(n) = (qd+r) * d^(C-R) * (d+1)^R, where r = (n-Cp) mod q, Q = floor( (R-Cp)/q ), R = Q mod (C+1), and d = floor ( Q/(C+1) ).
Recursive: a(n) = 3*a(n-19) for all n >= 164.

A193455 Paradigm shift sequence with procedure length p=3.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 16, 20, 25, 30, 36, 42, 49, 64, 80, 100, 125, 150, 180, 216, 256, 320, 400, 500, 625, 750, 900, 1080, 1296, 1600, 2000, 2500, 3125, 3750, 4500, 5400, 6480, 8000, 10000, 12500, 15625, 18750, 22500, 27000, 32400, 40000, 50000
Offset: 1

Views

Author

Jonathan T. Rowell, Jul 26 2011

Keywords

Comments

This sequence is the solution to the following problem: "Suppose you have the choice of using one of three production options: apply a simple action, bundle all existing actions (which requires p=3 steps), or apply the current bundled action. The first use of a novel bundle erases (or makes obsolete) all prior actions. How many total actions (simple) can be applied in n time steps?"
1. This problem is structurally similar to the Copy and Paste Keyboard problem: Existing sequences (A178715 and A193286) should be regarded as Paradigm-Shift Sequences with Procedural Lengths p=1 and 2, respectively.
2. The optimal number of pastes per copy, as measured by the geometric growth rate (p+z root of z), is z = 5. [Non-integer maximum between 4 and 5.]
3. The function a(n) = maximum value of the product of the terms k_i, where Sum (k_i) = n+ 3 - 3*i_max
4. All solutions will be of the form a(n) = m^b * (m+1)^d

Examples

			For n=20, C = floor(26/8) = 3, R = (23 mod 3) = 2, m = floor (23-9/3) = floor(14/3)=4; therefore a(20) = 4^(3-2)*5^(2) = 4*5^2 = 100.
For n=25, the same general formula is used, but C=4 (instead of 3). R=28 mod 4 =0, m = floor(28-12/4)=4; therefore a(25) = 4^4 = 256.
For n=35, C = floor(41/8)=5, R = 1, b = max(0,2)=2, d=max(0,-2)=0; therefore a(35) = 4^2*5^(5-2)*6^0 = 2000.
		

Crossrefs

Paradigm shift sequences: A000792 (p=0), A178715 (p=1), A193286 (p=2), A193455 (p=3), A193456 (p=4), A193457 (p=5).

Programs

  • Python
    def a(n):
        c=(n + 6)//8
        if n<25:
            if n<10: return n
            r=(n + 3)%c
            m=(n + 3 - 3*c)//c
            return m**(c - r)*(m + 1)**r
        elif n==25: return 256
        else:
            r=(n + 6)%8
            b=max(0, 3 - r)
            d=max(0, r - 3)
            return 4**b*5**(c - (b + d))*6**d
    print([a(n) for n in range(1, 101)]) # Indranil Ghosh, Jun 27 2017

Formula

a(n) =
a(25) = 256 [C = 4 below]
a(1:24) = m^(C-R) * (m+1)^R
where C = floor((n+6)/8) [min C=1],
R = n+3 mod C, m = floor((n+3-3*C)/C)
a(n>=26) = 4^b * 5^(C-(b+d)) * 6^d
where C = floor((n+6)/8), R = n+6 mod 8,
b = max(0,3-R), and d = max(0, R-3)
Recursive: a(n) = 5*a(n-8) for all n >= 34

A193457 Paradigm shift sequence with procedure length p=5.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 16, 20, 25, 30, 36, 42, 49, 56, 64, 72, 81, 100, 125, 150, 180, 216, 252, 294, 343, 392, 448, 512, 625, 750, 900, 1080, 1296, 1512, 1764, 2058, 2401, 2744, 3136, 3750, 4500, 5400, 6480, 7776, 9072, 10584, 12348, 14406
Offset: 1

Views

Author

Jonathan T. Rowell, Jul 27 2011

Keywords

Comments

This sequence is the solution to the following problem: "Suppose you have the choice of using one of three production options: apply a simple action, bundle all existing actions (which requires p=5 steps), or apply the current bundled action. The first use of a novel bundle erases (or makes obsolete) all prior actions. How many total actions (simple) can be applied in n time steps?"
1. This problem is structurally similar to the Copy and Paste Keyboard problem: Existing sequences (A178715 and A193286) should be regarded as Paradigm-Shift Sequences with Procedural Lengths p=1 and 2, respectively.
2. The optimal number of pastes per copy, as measured by the geometric growth rate (p+z root of z), is z = 6. [Non-integer maximum between 6 and 7.]
3. The function a(n) = maximum value of the product of the terms k_i, where Sum (k_i) = n+ 5 - 5*i_max
4. All solutions will be of the form a(n) = m^b * (m+1)^d

Examples

			For n=30, C=floor(38/11)=3, m=floor(35/3)-5 = 11-5 = 6, and R= (35 mod 3) = 2; therefore a(30) = 6^(3-2)*7^2 = 6*7^2 =294.
For n=13, use the general formula with C=2 (rather than C=1), with R = (18 mod 2) = 0, m=floor(18/2)-5=9-5=4; therefore a(13)=4^2*5^0=16.
For n=80, C = floor(88/11)=8, R=(88 mod 11) = 0, b = max(0,3)=3, and d=max(0,-3)=0; therefore a(80) = 5^3*6^(8-3)*7^0 = 5^3*6^5 = 972000
		

Crossrefs

A000792 (n>=1), A178715, A193286, A193455, A193456, and A193457 are paradigm shift sequences for p=0,1,...5 respectively.

Formula

a(n) =
a(13) = 16 [C=2 below]
a(24) = 100 [C=3 below]
a(46) = 3750 [C=5 below]
a(57) = 22500 [C=6 below]
a(68) = 135000 [C=7 below]
a(1:68) = m^(C-R) * (m+1)^R
where C = floor((n+8)/11) [min C=1]
m = floor ((n+5)/C)-5, and R = n+5 mod C
a(n>=69) = 5^b * 6^(C-b-d) * 7^d
where C = floor((n+8)/11)
R = n+8 mod 11
b = max(0, 3-R); d = max(0, R-3)
Recursive: for n>=80, a(n)=6*a(n-11)

A246098 Paradigm shift sequence for (4,4) production scheme with replacement.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 27, 30, 33, 36, 39, 42, 45, 48, 52, 56, 60, 64, 68, 72, 76, 80, 85, 90, 99, 108, 117, 126, 135, 144, 156, 168, 180, 192, 208, 224, 240, 256, 272, 288, 304, 324, 351, 378, 405, 432, 468, 504, 540, 576, 624, 672, 720, 768, 832, 896, 960, 1024, 1088, 1152, 1216, 1296, 1404, 1512, 1620, 1728, 1872, 2016, 2160, 2304, 2496, 2688, 2880, 3072, 3328, 3584, 3840, 4096, 4352, 4608, 4864, 5184
Offset: 1

Views

Author

Jonathan T. Rowell, Aug 13 2014

Keywords

Comments

This sequence is the solution to the following problem: "Suppose you have the choice of using one of three production options: apply a simple incremental action, bundle existing output as an integrated product (which requires p=4 steps), or implement the current bundled action (which requires q=4 steps). The first use of a novel bundle erases (or makes obsolete) all prior actions. How large an output can be generated in n time steps?"
1. A production scheme with replacement R(p,q) eliminates existing output following a bundling action, while an additive scheme A(p,q) retains the output. The schemes correspond according to A(p,q)=R(p-q,q), with the replacement scheme serving as the default presentation.
2. This problem is structurally similar to the Copy and Paste Keyboard problem: Existing sequences (A178715 and A193286) should be regarded as Paradigm-Shift Sequences with production schemes R(1,1) and R(2,1) with replacement, respectively.
3. The ideal number of implementations per bundle, as measured by the geometric growth rate (p+zq root of z), is z = 4.
4. All solutions will be of the form a(n) = (qm+r) * m^b * (m+1)^d.

Crossrefs

Paradigm shift sequences with q=4: A029750, A103969, A246074, A246078, A246082, A246086, A246090, A246094, A246098, A246102.
Paradigm shift sequence with p=4: A193456, A246096, A246097, A246098, A246099.

Formula

a(n) = (qd+r) * d^(C-R) * (d+1)^R, where r = (n-Cp) mod q, Q = floor( (R-Cp)/q ), R = Q mod (C+1), and d = floor ( Q/(C+1) ).
Recursive: a(n) = 4*a(n-20) for all n >= 64.

A246096 Paradigm shift sequence for (4,2) production scheme with replacement.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 18, 21, 24, 28, 32, 36, 40, 45, 50, 55, 60, 66, 72, 84, 96, 112, 128, 144, 160, 180, 200, 225, 250, 275, 300, 336, 384, 448, 512, 576, 640, 720, 800, 900, 1000, 1125, 1250, 1375, 1536, 1792, 2048, 2304, 2560, 2880, 3200, 3600, 4000, 4500, 5000, 5625, 6250, 7168, 8192, 9216, 10240, 11520, 12800, 14400, 16000, 18000, 20000, 22500, 25000
Offset: 1

Views

Author

Jonathan T. Rowell, Aug 13 2014

Keywords

Comments

This sequence is the solution to the following problem: "Suppose you have the choice of using one of three production options: apply a simple incremental action, bundle existing output as an integrated product (which requires p=4 steps), or implement the current bundled action (which requires q=2 steps). The first use of a novel bundle erases (or makes obsolete) all prior actions. How large an output can be generated in n time steps?"
1. A production scheme with replacement R(p,q) eliminates existing output following a bundling action, while an additive scheme A(p,q) retains the output. The schemes correspond according to A(p,q)=R(p-q,q), with the replacement scheme serving as the default presentation.
2. This problem is structurally similar to the Copy and Paste Keyboard problem: Existing sequences (A178715 and A193286) should be regarded as Paradigm-Shift Sequences with production schemes R(1,1) and R(2,1) with replacement, respectively.
3. The ideal number of implementations per bundle, as measured by the geometric growth rate (p+zq root of z), is z = 4.
4. All solutions will be of the form a(n) = (qm+r) * m^b * (m+1)^d.

Crossrefs

Paradigm shift sequences with q=2: A029744, A029747, A246080, A246084, A246088, A246092, A246096, A246100.
Paradigm shift sequences with p=4: A193456, A246096, A246097, A246098, A246099.

Formula

a(n) = (qd+r) * d^(C-R) * (d+1)^R, where r = (n-Cp) mod q, Q = floor( (R-Cp)/q ), R = Q mod (C+1), and d = floor ( Q/(C+1) ).
Recursive: a(n) = 4*a(n-12) for all n >= 67.

A246097 Paradigm shift sequence for (4,3) production scheme with replacement.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 24, 27, 30, 33, 36, 40, 44, 48, 52, 56, 60, 65, 70, 75, 81, 90, 99, 108, 120, 132, 144, 160, 176, 192, 208, 224, 240, 260, 280, 300, 325, 360, 396, 432, 480, 528, 576, 640, 704, 768, 832, 896, 960, 1040, 1120, 1200, 1300, 1440, 1584, 1728, 1920, 2112, 2304, 2560, 2816, 3072, 3328, 3584, 3840, 4160, 4480, 4800, 5200, 5760, 6336, 6912, 7680, 8448, 9216, 10240, 11264, 12288, 13312, 14336, 15360, 16640, 17920, 19200, 20800, 23040
Offset: 1

Views

Author

Jonathan T. Rowell, Aug 13 2014

Keywords

Comments

This sequence is the solution to the following problem: "Suppose you have the choice of using one of three production options: apply a simple incremental action, bundle existing output as an integrated product (which requires p=4 steps), or implement the current bundled action (which requires q=3 steps). The first use of a novel bundle erases (or makes obsolete) all prior actions. How large an output can be generated in n time steps?"
1. A production scheme with replacement R(p,q) eliminates existing output following a bundling action, while an additive scheme A(p,q) retains the output. The schemes correspond according to A(p,q)=R(p-q,q), with the replacement scheme serving as the default presentation.
2. This problem is structurally similar to the Copy and Paste Keyboard problem: Existing sequences (A178715 and A193286) should be regarded as Paradigm-Shift Sequences with production schemes R(1,1) and R(2,1) with replacement, respectively.
3. The ideal number of implementations per bundle, as measured by the geometric growth rate (p+zq root of z), is z = 4.
4. All solutions will be of the form a(n) = (qm+r) * m^b * (m+1)^d.

Crossrefs

Paradigm shift sequences with q=3: A029747, A029750, A246077, A246081, A246085, A246089, A246093, A246097, A246101.
Paradigm shift sequences with p=4: A193456, A246096, A246097, A246098, A246099.

Formula

a(n) = (qd+r) * d^(C-R) * (d+1)^R, where r = (n-Cp) mod q, Q = floor( (R-Cp)/q ), R = Q mod (C+1), and d = floor ( Q/(C+1) ).
Recursive: a(n) = 4*a(n-16) for all n >= 52.
Showing 1-9 of 9 results.