cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A193535 Decimal expansion of log(2)/3.

Original entry on oeis.org

2, 3, 1, 0, 4, 9, 0, 6, 0, 1, 8, 6, 6, 4, 8, 4, 3, 6, 4, 7, 2, 4, 1, 0, 7, 0, 7, 1, 5, 2, 7, 2, 5, 5, 2, 2, 6, 9, 1, 8, 3, 3, 3, 7, 8, 1, 2, 0, 0, 8, 5, 0, 8, 4, 7, 0, 6, 8, 9, 3, 3, 3, 6, 4, 9, 7, 7, 9, 7, 8, 7, 3, 9, 8, 9, 8, 9, 8, 2, 3, 8, 5, 3, 5, 2, 8, 7, 7, 7, 5, 6, 6, 5, 4, 7, 2, 8
Offset: 0

Views

Author

Alonso del Arte, Jul 29 2011

Keywords

Comments

This number is involved as an addend or subtrahend in the closed forms of certain series of reciprocals of integers (see for example A113476).

Examples

			0.231049060186648...
		

References

  • L. B. W. Jolley, Summation of Series, Dover (1961).
  • Murray R. Spiegel, Seymour Lipschutz, John Liu. Mathematical Handbook of Formulas and Tables, 3rd Ed. Schaum's Outline Series. New York: McGraw-Hill (2009): p. 135, equations 21.16 and 21.18.

Crossrefs

Programs

Formula

Equals lim_{n->oo} [Sum_{i = 1..n} i^2/(n^3 + i^3)]. [Jolley eq 292, p.52]
Equals Sum_{n>=1} (-1)^(n-1)/(n*2^n*binomial(2*n, n)). - Arkadiusz Wesolowski, Jan 20 2013
From Amiram Eldar, Aug 05 2020: (Start)
Equals Integral_{x=1..oo} 1/(x^4 + x) dx.
Equals Integral_{x=0..oo} 1/(exp(2*x) + 3) dx. (End)
From Peter Bala, Feb 27 2024: (Start)
Equals (1/2)*Sum_{k >= 0} (-1)^k/((3*k + 1)*(3*k + 2)) = (1/2)*(1/(2 + (1*2)^2/(18 + (4*5)^2/(2*18 + (7*8)^2/(3*18 + (10*11)^2/(4*18 + ... )))))) (continued fraction). See A052502.
Equals 7/32 + (3/2)*Sum_{k >= 0} (-1)^k/((3*k + 1)*(3*k + 2)*(3*k + 3)*(3*k + 4)*(3*k + 5)). (End)