cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A193558 Differences between consecutive primes of the form k^2+1.

Original entry on oeis.org

3, 12, 20, 64, 96, 60, 144, 176, 100, 620, 304, 1316, 220, 1220, 1120, 1580, 1044, 736, 3264, 1356, 944, 976, 500, 1024, 1056, 3360, 1184, 1836, 1264, 3300, 2076, 1424, 1456, 7760, 820, 1664, 6076, 2724, 2796, 1904, 4900, 3036, 2064, 2096, 3204, 5500, 2256
Offset: 1

Views

Author

Michel Lagneau, Jul 30 2011

Keywords

Comments

It is conjectured that the sequence of primes of the form k^2+1 is infinite, but this has never been proved. This sequence contains a subset of squares: {64, 144, 100, 1024, 4900, 10816, 11664, 12544, 18496, 102400, 41616, ...}.

Examples

			a(2) = 12 because (4^2+1)-(2^2+1) = 17 - 5 = 12.
		

Crossrefs

Cf. A002496.

Programs

  • Mathematica
    Differences[Select[Range[250]^2 + 1, PrimeQ]]
  • PARI
    lista(nn) = my(v=select(x->issquare(x-1), primes(nn))); vector(#v-1, k, v[k+1] - v[k]) \\ Michel Marcus, Dec 04 2020