A196661
Expansion of g.f. (1-2*x)/(1-7*x).
Original entry on oeis.org
1, 5, 35, 245, 1715, 12005, 84035, 588245, 4117715, 28824005, 201768035, 1412376245, 9886633715, 69206436005, 484445052035, 3391115364245, 23737807549715, 166164652848005, 1163152569936035, 8142067989552245, 56994475926865715, 398961331488060005
Offset: 0
A270471
Expansion of g.f. (1-3*x)/(1-7*x).
Original entry on oeis.org
1, 4, 28, 196, 1372, 9604, 67228, 470596, 3294172, 23059204, 161414428, 1129900996, 7909306972, 55365148804, 387556041628, 2712892291396, 18990246039772, 132931722278404, 930522055948828, 6513654391641796, 45595580741492572, 319169065190448004, 2234183456333136028
Offset: 0
-
CoefficientList[Series[(1 - 3 x)/(1 - 7 x), {x, 0, 21}], x] (* Michael De Vlieger, Mar 18 2016 *)
Join[{1},NestList[7#&,4,20]] (* Harvey P. Dale, Dec 21 2019 *)
-
Vec((1-3*x)/(1-7*x) + O(x^30))
A324265
a(n) = 5*343^n.
Original entry on oeis.org
5, 1715, 588245, 201768035, 69206436005, 23737807549715, 8142067989552245, 2792729320416420035, 957906156902832072005, 328561811817671400697715, 112696701453461290439316245, 38654968598537222620685472035, 13258654229298267358895116908005, 4547718400649305704101025099445715
Offset: 0
For a(0) = 5 and A324266(0) = 2, 5^2 + 7 = 32 = 4*2^3.
-
List([0..20], n->5*343^n);
-
[5*343^n: n in [0..20]];
-
a:=n->5*343^n: seq(a(n), n=0..20);
-
5*343^Range[0,20]
-
a(n) = 5*343^n;
Showing 1-3 of 3 results.
Comments