cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A193629 Triangle T(n,k), n>=0, 0<=k<=C(n,2), read by rows: T(n,k) = number of k-length chains in the poset of Dyck paths of semilength n ordered by inclusion.

Original entry on oeis.org

1, 1, 2, 1, 5, 9, 7, 2, 14, 70, 176, 249, 202, 88, 16, 42, 552, 3573, 13609, 33260, 54430, 60517, 45248, 21824, 6144, 768, 132, 4587, 72490, 653521, 3785264, 15104787, 43358146, 91942710, 146186256, 175196202, 157630704, 104922224, 50152960, 16290560, 3221504
Offset: 0

Views

Author

Alois P. Heinz, Aug 01 2011

Keywords

Examples

			Poset of Dyck paths of semilength n=3:
.
.      A       A:/\      B:
.      |        /  \      /\/\
.      B       /    \    /    \
.     / \
.    C   D     C:        D:        E:
.     \ /         /\      /\
.      E       /\/  \    /  \/\    /\/\/\
.
Chains of length k=0: A, B, C, D, E (5); k=1: A-B, A-C, A-D, A-E, B-C, B-D, B-E, C-E, D-E (9); k=2: A-B-C, A-B-D, A-B-E, A-C-E, A-D-E, B-C-E, B-D-E (7), k=3: A-B-C-E, A-B-D-E (2) => [5, 9, 7, 2].
Triangle begins:
:   1;
:   1;
:   2,    1;
:   5,    9,     7,      2;
:  14,   70,   176,    249,     202,       88,       16;
:  42,  552,  3573,  13609,   33260,    54430,    60517,    45248, ...
: 132, 4587, 72490, 653521, 3785264, 15104787, 43358146, 91942710, ...
		

Crossrefs

Row sums give: A143672-A057427. Column k=0 gives: A000108. Last elements of rows give: A005118. Row lengths give: A000124(n-1). Cf. A193536.

Programs

  • Maple
    d:= proc(x, y, l) option remember;
          `if`(x<=1, [[l[], y]], [seq(d(x-1, i, [l[], y])[], i=x-1..y)])
        end:
    le:= proc(l1, l2) local i;
           for i to nops(l1) do if l1[i]>l2[i] then return false fi od; true
         end:
    T:= proc(n) option remember; local h, l, m, g, r;
          l:= d(n, n, []); m:= nops(l);
          g:= proc(t) option remember; local r, d;
                r:= [1];
                for d to t-1 do if le(l[d], l[t]) then
                  r:= zip((x, y)->x+y, r, [0, g(d)[]], 0)
                fi od; r
              end;
          r:= [];
          for h to m do
            r:= zip((x, y)->x+y, r, g(h), 0)
          od; r[]
        end:
    seq(T(n), n=0..7);