A193629 Triangle T(n,k), n>=0, 0<=k<=C(n,2), read by rows: T(n,k) = number of k-length chains in the poset of Dyck paths of semilength n ordered by inclusion.
1, 1, 2, 1, 5, 9, 7, 2, 14, 70, 176, 249, 202, 88, 16, 42, 552, 3573, 13609, 33260, 54430, 60517, 45248, 21824, 6144, 768, 132, 4587, 72490, 653521, 3785264, 15104787, 43358146, 91942710, 146186256, 175196202, 157630704, 104922224, 50152960, 16290560, 3221504
Offset: 0
Examples
Poset of Dyck paths of semilength n=3: . . A A:/\ B: . | / \ /\/\ . B / \ / \ . / \ . C D C: D: E: . \ / /\ /\ . E /\/ \ / \/\ /\/\/\ . Chains of length k=0: A, B, C, D, E (5); k=1: A-B, A-C, A-D, A-E, B-C, B-D, B-E, C-E, D-E (9); k=2: A-B-C, A-B-D, A-B-E, A-C-E, A-D-E, B-C-E, B-D-E (7), k=3: A-B-C-E, A-B-D-E (2) => [5, 9, 7, 2]. Triangle begins: : 1; : 1; : 2, 1; : 5, 9, 7, 2; : 14, 70, 176, 249, 202, 88, 16; : 42, 552, 3573, 13609, 33260, 54430, 60517, 45248, ... : 132, 4587, 72490, 653521, 3785264, 15104787, 43358146, 91942710, ...
Links
- Alois P. Heinz, Rows n = 0..11, flattened
- J. Woodcock, Properties of the poset of Dyck paths ordered by inclusion
Crossrefs
Programs
-
Maple
d:= proc(x, y, l) option remember; `if`(x<=1, [[l[], y]], [seq(d(x-1, i, [l[], y])[], i=x-1..y)]) end: le:= proc(l1, l2) local i; for i to nops(l1) do if l1[i]>l2[i] then return false fi od; true end: T:= proc(n) option remember; local h, l, m, g, r; l:= d(n, n, []); m:= nops(l); g:= proc(t) option remember; local r, d; r:= [1]; for d to t-1 do if le(l[d], l[t]) then r:= zip((x, y)->x+y, r, [0, g(d)[]], 0) fi od; r end; r:= []; for h to m do r:= zip((x, y)->x+y, r, g(h), 0) od; r[] end: seq(T(n), n=0..7);