cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A193635 Triangle: T(n,k)=C(3n-k,k), 0<=k<=n.

Original entry on oeis.org

1, 1, 2, 1, 5, 6, 1, 8, 21, 20, 1, 11, 45, 84, 70, 1, 14, 78, 220, 330, 252, 1, 17, 120, 455, 1001, 1287, 924, 1, 20, 171, 816, 2380, 4368, 5005, 3432, 1, 23, 231, 1330, 4845, 11628, 18564, 19448, 12870, 1, 26, 300, 2024, 8855, 26334, 54264, 77520, 75582
Offset: 0

Views

Author

Clark Kimberling, Aug 01 2011

Keywords

Examples

			First 5 rows of A193635:
1
1...2
1...7....10
1...15...66....82
1...26...231...811...930
		

Crossrefs

Cf. A193636.

Programs

  • Mathematica
    p[n_, k_] := Binomial[3 n - k, k];
    Table[p[n, k], {n, 0, 9}, {k, 0, n}]  (* A193635 *)
    Flatten[%]

Formula

T(n,k)=C(3n-k,k), 0<=k<=n.

A375441 Expansion of g.f. A(x) satisfying 0 = Sum_{k=0..n} (-1)^k * binomial(3*n-2*k, k) * ([x^k] A(x)^n) for n >= 1.

Original entry on oeis.org

1, 1, 3, 27, 520, 17461, 924123, 72565316, 8092491188, 1237738519836, 252223179026317, 66826143258640668, 22547253821858556366, 9516722710620123685768, 4947980149610424524104600, 3126554347854062023615490499, 2372761989077914432028426533800, 2140079932579758851404630992687571
Offset: 0

Views

Author

Paul D. Hanna, Sep 11 2024

Keywords

Comments

Note that 0 = Sum_{k=0..n} (-1)^k * binomial(n+2*k, 3*k) * ([x^k] D(x)^n) for n >= 1 is satisfied by the function D(x) = 1 + x*D(x)^3 (g.f. of A001764), where coefficient [x^k] D(x)^n = binomial(n+3*k-1, k)*n/(n+2*k).

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 27*x^3 + 520*x^4 + 17461*x^5 + 924123*x^6 + 72565316*x^7 + 8092491188*x^8 + ...
RELATED TABLES.
The table of coefficients of x^k in A(x)^n begins:
  n=1: [1, 1,  3,  27,  520,  17461,  924123, ...];
  n=2: [1, 2,  7,  60, 1103,  36124, 1887017, ...];
  n=3: [1, 3, 12, 100, 1758,  56097, 2890755, ...];
  n=4: [1, 4, 18, 148, 2495,  77500, 3937572, ...];
  n=5: [1, 5, 25, 205, 3325, 100466, 5029880, ...];
  n=6: [1, 6, 33, 272, 4260, 125142, 6170284, ...];
  ...
from which we may illustrate the defining property given by
0 = Sum_{k=0..n} (-1)^k * binomial(3*n-2*k, k) * ([x^k] A(x)^n).
Using the coefficients in the table above, we see that
  n=1: 0 = 1*1 - 1*1;
  n=2: 0 = 1*1 - 4*2 + 1*7;
  n=3: 0 = 1*1 - 7*3 + 10*12 - 1*100;
  n=4: 0 = 1*1 - 10*4 + 28*18 - 20*148 + 1*2495;
  n=5: 0 = 1*1 - 13*5 + 55*25 - 84*205 + 35*3325 - 1*100466;
  n=6: 0 = 1*1 - 16*6 + 91*33 - 220*272 + 210*4260 - 56*125142 + 1*6170284;
  ...
The triangle A193636(n,k) = binomial(3*n-2*k, k) begins:
  n=0: 1;
  n=1: 1, 1;
  n=2: 1, 4, 1;
  n=3: 1, 7, 10, 1;
  n=4: 1, 10, 28, 20, 1;
  n=5: 1, 13, 55, 84, 35, 1;
  n=6: 1, 16, 91, 220, 210, 56, 1;
  ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1],m); for(i=1, n, A=concat(A, 0); m=#A-1;
    A[#A] = sum(k=0, m, (-1)^(m-k+1) * binomial(3*m-2*k, k) * polcoef(Ser(A)^m, k) )/m ); A[n+1]}
    for(n=0, 20, print1(a(n), ", "))

Formula

a(n) ~ c * d^n * n!^3 * n^alpha, where d = 0.1579852929267375678916376580224..., alpha = 2.6601429516008505168108..., c = 0.86048778713891683578001... - Vaclav Kotesovec, Sep 12 2024
Showing 1-2 of 2 results.