cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A193653 Q-residue of the Delannoy triangle A008288, where Q is the triangular array (t(i,j)) given by t(i,j)=1.

Original entry on oeis.org

1, 2, 6, 20, 70, 248, 882, 3140, 11182, 39824, 141834, 505148, 1799110, 6407624, 22821090, 81278516, 289477726, 1030990208, 3671926074, 13077758636, 46577128054, 165886901432, 590814960402, 2104218684068, 7494285973006, 26691295287152, 95062457807466
Offset: 0

Views

Author

Clark Kimberling, Aug 02 2011

Keywords

Comments

For the definition of Q-residue, see A193649.
This sequence gives the number of closed walks from the two vertices having loops in the digraph defined by its adjacency matrix A = (2,1,1; 1,2,1; 1,1,0). - David Neil McGrath, Aug 22 2014

Crossrefs

Programs

  • Magma
    [n le 3 select Factorial(n) else 4*Self(n-1) -Self(n-2) -2*Self(n-3): n in [1..41]]; // G. C. Greubel, May 25 2021
    
  • Mathematica
    (* First program *)
    q[n_, k_] := 1;
    r[0] = 1; r[k_]:= Sum[q[k-1, i]*r[k-1-i], {i, 0, k-1}]
    p[n_, k_]:= p[n, k]= If[k==0 || k==n, 1, p[n-1, k-1] + p[n-2, k-1] + p[n-1, k]];  (* A008288, Delannoy *)
    v[n_]:= Sum[p[n, k]*r[n-k], {k, 0, n}];
    Table[v[n], {n, 0, 16}]    (* A193653 *)
    TableForm[Table[q[i, k], {i, 0, 4}, {k, 0, i}]]
    Table[r[k], {k, 0, 8}]  (* 2^k *)
    TableForm[Table[p[n, k], {n, 0, 4}, {k, 0, n}]]
    (* Second program *)
    LinearRecurrence[{4,-1,-2}, {1,2,6}, 40] (* G. C. Greubel, May 25 2021 *)
  • PARI
    Vec((1-2*t-t^2)/(1-4*t+t^2+2*t^3) + O(t^40)) \\ Michel Marcus, Aug 23 2014
    
  • PARI
    a(n) = round((34+(17-3*sqrt(17))*((3-sqrt(17))/2)^n+((3+sqrt(17))/2)^n*(17+3*sqrt(17)))/68) \\ Colin Barker, Sep 02 2016
    
  • Sage
    [(1/2)*(1 + sum(binomial(n-k,k)*2^k*3^(n-2*k) for k in (0..n//2))) for n in (0..40)] # G. C. Greubel, May 25 2021

Formula

From David Neil McGrath, Aug 22 2014: (Start)
a(n) = 4*a(n-1) - a(n-2) - 2*a(n-3).
a(n-1) = (1,1) and (2,2) elements of A^(n-1) where A=(2,1,1; 1,2,1; 1,1,0) and n>1. (End)
G.f.: (1-2*t-t^2)/(1-4*t+t^2+2*t^3). - Robert Israel, Aug 22 2014
a(n) = (34 + (17-3*sqrt(17))*((3-sqrt(17))/2)^n + ((3+sqrt(17))/2)^n*(17+3*sqrt(17)))/68. - Colin Barker, Sep 02 2016
From G. C. Greubel, May 25 2021: (Start)
a(n) = (1/2)*(1 + (i*sqrt(2))^n * ChebyshevU(n, -3*i/(2*sqrt(2)))).
a(n) = (1/2)*( 1 + Sum_{j=0..floor(n/2)} binomial(n-k,k)*2^k*3^(n-2*k) ). (End)