cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A193675 Number of nonisomorphic systems enumerated by A102897; that is, the number of inequivalent Horn functions, under permutation of variables.

Original entry on oeis.org

2, 4, 10, 38, 368, 29328, 216591692, 5592326399531792
Offset: 0

Views

Author

Don Knuth, Jul 01 2005

Keywords

Comments

When speaking of inequivalent Boolean functions, three groups of symmetries are typically considered: Complementations only, the Abelian group (2,...,2) of 2^n elements; permutations only, the symmetric group of n! elements; or both complementations and permutations, the octahedral group of 2^n n! elements. In this case only symmetry with respect to the symmetric group is appropriate because complementation affects the property of being a Horn function.
Also the number of non-isomorphic sets of subsets of {1..n} that are closed under union. - Gus Wiseman, Aug 04 2019

Examples

			From _Gus Wiseman_, Aug 04 2019: (Start)
Non-isomorphic representatives of the a(0) = 2 through a(2) = 10 sets of sets:
  {}    {}        {}
  {{}}  {{}}      {{}}
        {{1}}     {{1}}
        {{},{1}}  {{1,2}}
                  {{},{1}}
                  {{},{1,2}}
                  {{2},{1,2}}
                  {{},{2},{1,2}}
                  {{1},{2},{1,2}}
                  {{},{1},{2},{1,2}}
(End)
		

References

  • D. E. Knuth, The Art of Computer Programming, Vol. 4A, Section 7.1.1, p. 79.

Crossrefs

The covering case is A326907.
The case without {} is A193674.
The labeled version is A102897.
The same with intersection instead of union is also A193675.
The case closed under both union and intersection also is A326908.

Formula

a(n) = 2 * A193674(n).

Extensions

a(6) received from Don Knuth, Aug 17 2005
a(6) corrected by Pierre Colomb, Aug 02 2011
a(7) = 2*A193674(7) from Hugo Pfoertner, Jun 18 2018