cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A193679 Sequence related to discriminant of cyclotomic polynomials A004124.

Original entry on oeis.org

1, 2, 3, 4, 5, 12, 7, 16, 27, 80, 11, 144, 13, 448, 2025, 256, 17, 1728, 19, 6400, 35721, 11264, 23, 20736, 3125, 53248, 19683, 200704, 29, 518400, 31, 65536, 7144929, 1114112, 37515625, 2985984, 37, 4980736, 89813529, 40960000, 41, 146313216, 43, 126877696
Offset: 1

Views

Author

Wolfdieter Lang, Aug 20 2011

Keywords

Comments

a(p) = p for primes p.

Examples

			n=6: a(6) = 2^(2/(2-1))*3^(2/(3-1)) = 12.
     Discriminant(Phi(6,x)) = -3 = - (6^phi(6))/a(6).
		

References

  • P. Ribenboim, Classical Theory of Algebraic Numbers, Springer, 2001, p. 297, eq.(1).

Crossrefs

Cf. A004124.

Programs

  • Maple
    with(numtheory): A193679 := n -> n^phi(n)/abs(discrim(cyclotomic (n,x),x)); seq(A193679(i),i=1..49); # Peter Luschny, Aug 20 2011
  • Mathematica
    a[n_] := n^EulerPhi[n]/Abs[Discriminant[Cyclotomic[n, x], x]]; Array[a, 44]
    (* Jean-François Alcover, Mar 21 2017 *)
    Table[Product[d^(-n*MoebiusMu[d]/d), {d, Divisors[n]}], {n, 1, 50}] (* Vaclav Kotesovec, May 12 2024 *)
    Table[Product[p^(EulerPhi[n]/(p-1)), {p, Select[Divisors[n], PrimeQ[#]&]}], {n, 1, 50}] (* Vaclav Kotesovec, May 13 2024 *)
  • PARI
    a(n) = n^eulerphi(n)/abs(poldisc(polcyclo(n))); \\ Michel Marcus, Jul 14 2018

Formula

a(n) = n^phi(n)/abs(discriminant(Phi(n,x))), n>=1, with the cyclotomic polynomials Phi(n,x) and the Euler totient function phi(n)=A000010(n).
a(n) = product(p^(phi(n)/(p-1)),p prime dividing n), n>=2, a(1)=1.
Conjecture: Dirichlet g.f. of log(a(n)): -zeta(s-1)*zeta'(s)/zeta(s)^2, where zeta'(s) is the derivative of zeta(s). This would give a(n) = exp(Sum_{d|n} Lambda(d)*phi(n/d)), with Lambda(n)=log(A014963) and phi(n)=A000010. - Benedict W. J. Irwin, Jul 14 2018