cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A001783 n-phi-torial, or phi-torial of n: Product k, 1 <= k <= n, k relatively prime to n.

Original entry on oeis.org

1, 1, 2, 3, 24, 5, 720, 105, 2240, 189, 3628800, 385, 479001600, 19305, 896896, 2027025, 20922789888000, 85085, 6402373705728000, 8729721, 47297536000, 1249937325, 1124000727777607680000, 37182145, 41363226782215962624, 608142583125, 1524503639859200000
Offset: 1

Views

Author

Keywords

Comments

In other words, a(1) = 1 and for n >= 2, a(n) = product of the phi(n) numbers < n and relatively prime to n.
From Gauss's generalization of Wilson's theorem (see Weisstein link) it follows that, for n>1, a(n) == -1 (mod n) if and only if there exists a primitive root modulo n (cf. the Hardy and Wright reference, Theorem 129. p. 102). - Vladimir Shevelev, May 11 2012
Islam & Manzoor prove that a(n) is an injection for n > 1, see links. In other words, if a(m) = a(n), and min(m, n) > 1, then m = n. - Muhammed Hedayet, May 25 2016
Cosgrave & Dilcher propose the name Gauss factorial. Indeed the sequence is the special case N = n of the Gauss factorial N_n! = Product_{1<=j<=N, gcd(j, n)=1} j (see A216919). - Peter Luschny, Feb 07 2018

References

  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Fifth ed., Clarendon Press, Oxford, 2003, Theorem 129, p. 102.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Main diagonal gives A216919.

Programs

  • Haskell
    a001783 = product . a038566_row
    -- Reinhard Zumkeller, Mar 04 2012, Aug 26 2011
    
  • Maple
    A001783 := proc(n) local i,t1; t1 := 1; for i from 1 to n do if gcd(i,n)=1 then t1 := t1*i; fi; od; t1; end;
    A001783 := proc(n) local i; mul(i,i=select(k->igcd(n,k)=1,[$1..n])) end; # Peter Luschny, Oct 30 2010
  • Mathematica
    A001783[n_]:=Times@@Select[Range[n],CoprimeQ[n,#]&];
    Array[A001783,20] (* Enrique Pérez Herrero, Jul 23 2011 *)
  • PARI
    A001783(n)=prod(k=2,n-1,k^(gcd(k,n)==1))  \\ M. F. Hasler, Jul 23 2011
    
  • PARI
    a(n)=my(f=factor(n),t=n^eulerphi(f)); fordiv(f,d, t*=(d!/d^d)^moebius(n/d)); t \\ Charles R Greathouse IV, Nov 05 2015
    
  • Sage
    def Gauss_factorial(N, n): return mul(j for j in (1..N) if gcd(j, n) == 1)
    def A001783(n): return Gauss_factorial(n, n)
    [A001783(n) for n in (1..25)] # Peter Luschny, Oct 01 2012

Formula

a(n) = n^phi(n)*Product_{d|n} (d!/d^d)^mu(n/d); phi=A000010 is the Euler totient function and mu=A008683 the Moebius function (Tom M. Apostol, Introduction to Analytic Number Theory, New York 1984, p. 48). - Franz Vrabec, Jul 08 2005
a(n) = n!/A066570(n). - R. J. Mathar, Mar 10 2011
A001221(a(n)) = A000720(n) - A001221(n) = A048865(n).
A006530(a(n)) = A136548(n). - Enrique Pérez Herrero, Jul 23 2011
a(n) = A124441(n)*A124442(n). - M. F. Hasler, Jul 23 2011
a(n) == (-1)^A211487(n) (mod n). - Vladimir Shevelev, May 13 2012
a(n) = A250269(n) / A193679(n). - Daniel Suteu, Apr 05 2021

Extensions

More terms from James Sellers, Dec 23 1999

A062981 a(n) = n^phi(n).

Original entry on oeis.org

1, 2, 9, 16, 625, 36, 117649, 4096, 531441, 10000, 25937424601, 20736, 23298085122481, 7529536, 2562890625, 4294967296, 48661191875666868481, 34012224, 104127350297911241532841, 25600000000, 7355827511386641
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 24 2001

Keywords

Crossrefs

Programs

Formula

a(n) = A001783(n) / (Product_{d|n} (d!/d^d)^A008683(n/d)) = (Product_{GCD(k, n)=1} k) / (Product_{d|n} (d!/d^d)^A008683(n/d)) = A175504(n) * n. - Jaroslav Krizek, May 31 2010
Sum_{n>=1} 1/a(n) = A239725. - Amiram Eldar, Nov 19 2020

A215041 a(n) = n^degree(C(n,x))/discriminant(C(n,x)) for the minimal polynomials C(n,x) of 2*cos(Pi/n), given in A187360.

Original entry on oeis.org

1, 2, 3, 2, 5, 3, 7, 2, 9, 5, 11, 9, 13, 7, 45, 2, 17, 27, 19, 25, 189, 11, 23, 81, 125, 13, 243, 49, 29, 2025, 31, 2, 2673, 17, 6125, 729, 37, 19, 9477, 625, 41, 35721, 43, 121, 91125, 23, 47, 6561, 2401, 3125, 111537, 169, 53, 19683, 378125
Offset: 1

Views

Author

Wolfdieter Lang, Aug 24 2012

Keywords

Comments

The discriminants for C(n,x), the minimal polynomial of 2*cos(Pi/n) are found under A193681. The degree of C(n,x), called delta(n), is given as A055034(n).
Compare this sequence with A193679, the anologon for the cyclotomic polynomials. See also the P. Ribenboim reference given in A004124.

Examples

			a(30) = 30^delta(30)/A193681(30) = 30^8/324000000 = 2025.
For the conjectures: i) a(4) = 2; ii) a^(3^2) = a(9) = 3^((3+1)/2) = 9; iii) a(30) = a(2*3*5) = 3^(delta(30)/2)*5^(delta(30)/4) = 3^4*5^2 = 2025;
  a(40) = a(2^3*5) = 5^(delta(40)/4) = 5^4 = 625; a(45) = a(3^2*5) = 3^(delta(45)/2)* 5^(delta(45)/4) = 91125.
		

References

  • Mohammad K. Azarian, On the Hyperfactorial Function, Hypertriangular Function, and the Discriminants of Certain Polynomials, International Journal of Pure and Applied Mathematics, Vol. 36, No. 2, 2007, pp. 251-257. Mathematical Reviews, MR2312537. Zentralblatt MATH, Zbl 1133.11012.

Crossrefs

Cf. A193681, A055034, A193679 (cyclotomic case).

Formula

a(n) = (n^delta(n))/Discriminant(C(n,x)), n>=1, with the minimal polynomials C(n,x) of 2*cos(Pi/n), with coefficient triangle given in A187360, and their degree delta(n) given in A055034(n).
a(1) = 1. Conjectures for a(n), n>=2: i) a(2^k) = 2, k>=1;
ii) a(p^k) = p^((p^(k-1)+1)/2), for odd prime p and k>=1;
iii) a(n) = product(p^(delta(n)/(p-1)), odd p|n) otherwise.

A372793 Sequence related to the asymptotic expansion of Sum_{k=1..n} tau(m*k).

Original entry on oeis.org

1, 2, 3, 16, 5, 864, 7, 4096, 729, 64000, 11, 6879707136, 13, 2809856, 61509375, 4294967296, 17, 812479653347328, 19, 26843545600000000, 26795786661, 2791309312, 23, 4019988717840603673710821376, 9765625, 73719087104, 7625597484987, 25962355635465062711296, 29
Offset: 1

Views

Author

Vaclav Kotesovec, May 13 2024

Keywords

Comments

For m>=1, Sum_{k=1..n} tau(m*k) = A018804(m) * n * log(n) + O(n).
If p is prime, then Sum_{k=1..n} tau(p*k) ~ (2*p - 1) * n * (log(n) - 1 + 2*gamma)/p + n*log(p)/p, where gamma is the Euler-Mascheroni constant A001620.

Examples

			Sum_{k=1..n} tau(4*k) ~ (8*n*(log(n) + 2*gamma - 1) + n*4*log(2)) / 4, a(4) = exp(4*log(2)) = 16.
Sum_{k=1..n} tau(6*k) ~ (15*n*(log(n) + 2*gamma - 1) + n*(5*log(2) + 3*log(3))) / 6, a(6) = exp(5*log(2) + 3*log(3)) = 864.
Sum_{k=1..n} tau(8*k) ~ (20*n*(log(n) + 2*gamma - 1) + n*12*log(2)) / 8, a(8) = exp(12*log(2)) = 4096.
Sum_{k=1..n} tau(9*k) ~ (21*n*(log(n) + 2*gamma - 1) + n*6*log(3)) / 9, a(9) = exp(6*log(3)) = 729.
Sum_{k=1..n} tau(10*k) ~ (27*n*(log(n) + 2*gamma - 1) + n*(9*log(2) + 3*log(5))) / 10, a(10) = exp(9*log(2) + 3*log(5)) = 64000.
Sum_{k=1..n} tau(12*k) ~ (40*n*(log(n) + 2*gamma - 1) + n*(20*log(2) + 8*log(3))) / 12, a(12) = exp(20*log(2) + 8*log(3)) = 6879707136.
		

Crossrefs

Cf. A000005 (m=1), A099777 (m=2), A372713 (m=3), A372784 (m=4), A372785 (m=5), A372786 (m=6), A372787 (m=7), A372788 (m=8), A372789 (m=9), A372790 (m=10), A372791 (m=11), A372792 (m=12).

Formula

Sum_{k=1..n} tau(m*k) ~ A018804(m) * n * (log(n) - 1 + 2*gamma)/m + n*log(a(m))/m.
a(m) = exp(limit_{n->oo} (m * (Sum_{k=1..n} tau(m*k)) - A018804(m)*n*(log(n) - 1 + 2*gamma))/n).
If p is prime, then a(p) = p.
If p is prime, then a(p^k) = p^(k*p^(k-1)).
If p and q are distinct primes, then a(p*q) = p^(2*q-1) * q^(2*p-1).
Showing 1-4 of 4 results.