cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A036878 a(n) = p^(p-1) where p = prime(n).

Original entry on oeis.org

2, 9, 625, 117649, 25937424601, 23298085122481, 48661191875666868481, 104127350297911241532841, 907846434775996175406740561329, 88540901833145211536614766025207452637361, 550618520345910837374536871905139185678862401
Offset: 1

Views

Author

Simon Colton (simonco(AT)cs.york.ac.uk)

Keywords

Comments

Also the least refactorable number (A033950) that has the n-th prime as its least prime factor. - Robert G. Wilson v, Jun 28 2006

Examples

			5^(5-1) = 5^4 = 625.
		

Crossrefs

These integers are refactorable -- i.e., the number of divisors divides the number itself, cf. A033950.
Subset of A062981. Subsequence of A000169.
Subsequence of A111134 and A246655.

Programs

A277521 Numbers k such that number of divisors of k and sum of divisors of k divides product of divisors of k and the average of the divisors of k is an integer.

Original entry on oeis.org

1, 6, 30, 66, 102, 210, 270, 318, 330, 420, 462, 510, 546, 570, 642, 672, 690, 714, 840, 870, 924, 930, 966, 1122, 1320, 1410, 1428, 1518, 1590, 1638, 1722, 1770, 1890, 1932, 2130, 2226, 2280, 2310, 2346, 2370, 2670, 2730, 2760, 2838, 2970, 2982, 3102, 3162, 3210, 3360, 3444, 3486, 3498, 3570, 3720, 3780, 3948, 3990
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 19 2016

Keywords

Comments

Intersection of A003601, A120736 and A145551.
Numbers k such that A000005(k)|A007955(k), A000203(k)|A007955(k) and A000005(k)| A000203(k).
Numbers k such that A000005(k)|A062981(k), A072861(k)|A062758(k) and A245656(k) = 1.

Examples

			a(2) = 6 because 6 has 4 divisors {1,2,3,6}, 1*2*3*6/4 = 9, 1*2*3*6/(1 + 2 + 3 + 6) = 3 and (1 + 2 + 3 + 6)/4 = 3 are integer.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q) local a,b,k,n;for n from 1 to q do
    a:=divisors(n); b:=mul(a[k],k=1..nops(a));
    if type(sigma(n)/tau(n),integer) and type(b/sigma(n),integer) and
    type(b/tau(n),integer) then print(n); fi;
    od; end: P(10^5); # Paolo P. Lava, Oct 20 2016
  • Mathematica
    Select[Range[4000], Divisible[Sqrt[#1]^DivisorSigma[0, #1], DivisorSigma[1, #1]] && Divisible[Sqrt[#1]^DivisorSigma[0, #1], DivisorSigma[0, #1]] && Divisible[DivisorSigma[1, #1], DivisorSigma[0, #1]] & ]

A066916 a(n) = n^phi(n) - 1.

Original entry on oeis.org

0, 1, 8, 15, 624, 35, 117648, 4095, 531440, 9999, 25937424600, 20735, 23298085122480, 7529535, 2562890624, 4294967295, 48661191875666868480, 34012223, 104127350297911241532840, 25599999999, 7355827511386640, 26559922791423, 907846434775996175406740561328, 110075314175
Offset: 1

Views

Author

Jason Earls, Jan 23 2002

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n^EulerPhi[n]-1,{n,30}] (* Harvey P. Dale, May 06 2015 *)
  • PARI
    a(n) = { n^eulerphi(n) - 1 } \\ Harry J. Smith, Apr 06 2010

Formula

a(n) = A062981(n) - 1.

A066915 a(n) = n^phi(n) + 1.

Original entry on oeis.org

2, 3, 10, 17, 626, 37, 117650, 4097, 531442, 10001, 25937424602, 20737, 23298085122482, 7529537, 2562890626, 4294967297, 48661191875666868482, 34012225, 104127350297911241532842, 25600000001, 7355827511386642, 26559922791425, 907846434775996175406740561330, 110075314177
Offset: 1

Views

Author

Jason Earls, Jan 23 2002

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n^EulerPhi[n]+1,{n,30}] (* Harvey P. Dale, May 29 2014 *)
  • PARI
    a(n) = { n^eulerphi(n) + 1 } \\ Harry J. Smith, Apr 06 2010

Formula

a(n) = A062981(n) + 1.

A175504 a(n) = n ^ (phi(n) - 1), phi(n) = A000010(n) = Euler totient function.

Original entry on oeis.org

1, 1, 3, 4, 125, 6, 16807, 512, 59049, 1000, 2357947691, 1728, 1792160394037, 537824, 170859375, 268435456, 2862423051509815793, 1889568, 5480386857784802185939, 1280000000, 350277500542221
Offset: 1

Views

Author

Jaroslav Krizek, May 31 2010

Keywords

Comments

a(n) = A062981(n) / n. a(n) = A001783(n) / n * Product_{d|n} (d!/d^d)^A008683(n/d) = (Product_{GCD(k, n)=1} k) / (n * Product_{d|n} (d!/d^d)^A008683(n/d)).

Programs

A175701 a(n) = n ^ (phi(n)+1), phi(n) = A000010(n) = Euler totient function.

Original entry on oeis.org

1, 4, 27, 64, 3125, 216, 823543, 32768, 4782969, 100000, 285311670611, 248832, 302875106592253, 105413504, 38443359375, 68719476736, 827240261886336764177, 612220032, 1978419655660313589123979
Offset: 1

Views

Author

Jaroslav Krizek, Aug 09 2010

Keywords

Examples

			For n = 6, a(6) = 6 ^ (phi(6)+1) = 6 ^ (A000010(6)+1) = 6 ^ (2+1) = 216.
		

Programs

Formula

a(n) = n*A062981(n). - R. J. Mathar, Apr 01 2014

A261768 a(n) = phi(n)^n - n^phi(n), where phi(n) is Euler's totient function.

Original entry on oeis.org

0, -1, -1, 0, 399, 28, 162287, 61440, 9546255, 1038576, 74062575399, 16756480, 83695120256591, 78356634560, 35181809198207, 281470681743360, 246486713303685957375, 101559922656192, 604107995057426434824791, 1152921479006846976
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 31 2015

Keywords

Comments

a(n) < n^n/e. If n is prime, a(n)/n^n = (1-1/n)^n - 1/n -> 1/e as n -> infinity. - Robert Israel, Sep 18 2015

Crossrefs

Programs

  • Magma
    [EulerPhi(n)^n-n^EulerPhi(n): n in [1..20]]; // Vincenzo Librandi, Sep 01 2015
  • Maple
    seq(numtheory:-phi(n)^n - n^numtheory:-phi(n),n=1..30); # Robert Israel, Sep 18 2015
  • Mathematica
    Table[EulerPhi[n]^n - n^EulerPhi[n], {n, 1, 20}]
  • PARI
    a(n) = eulerphi(n)^n - n^eulerphi(n) \\ Anders Hellström, Aug 31 2015
    

Formula

a(n) = A000010(n)^n - n^A000010(n) = A000010(n)^n - A062981(n).

A284438 a(n) = phi(n)^n.

Original entry on oeis.org

1, 1, 8, 16, 1024, 64, 279936, 65536, 10077696, 1048576, 100000000000, 16777216, 106993205379072, 78364164096, 35184372088832, 281474976710656, 295147905179352825856, 101559956668416, 708235345355337676357632, 1152921504606846976, 46005119909369701466112, 10000000000000000000000
Offset: 1

Views

Author

Vincenzo Librandi, Apr 05 2017

Keywords

Examples

			a(4) = 16 because phi(4)^4 = 2^4 = 16.
a(5) = 1024 because phi(5)^5 = 4^5 = 1024.
		

Crossrefs

Programs

  • Magma
    [EulerPhi(n)^n: n in [1..25]];
  • Mathematica
    Table[EulerPhi[n]^n, {n, 30}]
Showing 1-8 of 8 results.