cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A336722 a(n) = gcd(tau(n), sigma(n), pod(n)) where tau(k) is the number of divisors of k (A000005), sigma(k) is the sum of divisors of k (A000203) and pod(k) is the product of divisors of k (A007955).

Original entry on oeis.org

1, 1, 1, 1, 1, 4, 1, 1, 1, 2, 1, 2, 1, 4, 1, 1, 1, 3, 1, 2, 1, 4, 1, 4, 1, 2, 1, 2, 1, 8, 1, 1, 1, 2, 1, 1, 1, 4, 1, 2, 1, 8, 1, 2, 3, 4, 1, 2, 1, 1, 1, 2, 1, 8, 1, 8, 1, 2, 1, 12, 1, 4, 1, 1, 1, 8, 1, 2, 1, 8, 1, 3, 1, 2, 1, 2, 1, 8, 1, 2, 1, 2, 1, 4, 1, 4, 1, 4, 1, 6, 1, 2, 1, 4, 1, 12, 1, 1, 3, 1, 1, 8, 1, 2, 1
Offset: 1

Views

Author

Jaroslav Krizek, Aug 01 2020

Keywords

Comments

a(n) = tau(n) for numbers n: 1, 6, 14, 22, 30, 38, 42, 46, 54, 56, 60, 62, 66, 70, 78, 86, 94, 96, 102, ...

Examples

			a(6) = gcd(tau(6), sigma(6), pod(6)) = gcd(4, 12, 36) = 4.
		

Crossrefs

Cf. A009205 (gcd(tau(n), sigma(n))), A306671 (gcd(tau(n), pod(n))), A306682 (gcd(sigma(n), pod(n))).
Cf. A000005 (tau(n)), A000203 (sigma(n)), A007955 (pod(n)), A336723 (lcm(tau(n), sigma(n), pod(n))).
Cf. A277521 (numbers k such that a(k) = tau(k) and simultaneously A336723(k) = pod(k)).

Programs

  • Magma
    [GCD([#Divisors(n), &+Divisors(n), &*Divisors(n)]): n in [1..100]];
    
  • Mathematica
    a[n_] := GCD @@ {(d = DivisorSigma[0,n]), DivisorSigma[1, n], n^(d/2)}; Array[a, 100] (* Amiram Eldar, Aug 01 2020 *)
  • PARI
    A007955(n) = if(issquare(n, &n), n^numdiv(n^2), n^(numdiv(n)/2)); \\ From A007955
    A336722(n) = gcd(A007955(n), gcd(numdiv(n), sigma(n))); \\ Antti Karttunen, Aug 10 2020

Formula

a(p) = 1 for p = primes (A000040).
a(n) = gcd(A007955(n), A009205(n)). - Antti Karttunen, Aug 10 2020

Extensions

Data section extended up to a(105) by Antti Karttunen, Aug 10 2020

A336723 a(n) = lcm(tau(n), sigma(n), pod(n)) where tau(k) is the number of divisors of k (A000005), sigma(k) is the sum of divisors of k (A000203) and pod(k) is the product of divisors of k (A007955).

Original entry on oeis.org

1, 6, 12, 168, 30, 36, 56, 960, 351, 900, 132, 12096, 182, 1176, 1800, 158720, 306, 75816, 380, 168000, 14112, 4356, 552, 1658880, 11625, 14196, 29160, 65856, 870, 810000, 992, 2064384, 17424, 31212, 58800, 917070336, 1406, 21660, 85176, 23040000, 1722, 6223392
Offset: 1

Views

Author

Jaroslav Krizek, Aug 01 2020

Keywords

Comments

a(n) = pod(n) for numbers n: 1, 6, 30, 66, 84, 102, 120, 210, 270, 318, 330, 420, 462, 510, 546, 570, 642, ...

Examples

			a(6) = lcm(tau(6), sigma(6), pod(6)) = lcm(4, 12, 36) = 36.
		

Crossrefs

Cf. A009278 (lcm(tau(n), sigma(n))), A324528 (lcm(tau(n), pod(n))), A324529 (lcm(sigma(n), pod(n))).
Cf. A000005 (tau(n)), A000203 (sigma(n)), A007955 (pod(n)), A336722 (gcd(tau(n), sigma(n), pod(n))).
Cf. A277521 (numbers k such that a(k) = pod(k) and simultaneously A336722(k) = tau(k)).

Programs

  • Magma
    [LCM([#Divisors(n), &+Divisors(n), &*Divisors(n)]): n in [1..100]];
    
  • Mathematica
    a[n_] := LCM @@ {(d = DivisorSigma[0,n]), DivisorSigma[1, n], n^(d/2)}; Array[a, 50] (* Amiram Eldar, Aug 01 2020 *)
  • PARI
    a(n) = my(d=divisors(n)); lcm([#d, vecsum(d), vecprod(d)]); \\ Michel Marcus, Aug 12 2020

Formula

a(p) = p^2 + p for p = primes (A000040).

A338395 Numbers m such that lcm(tau(m), sigma(m), pod(m)) = pod(m).

Original entry on oeis.org

1, 6, 30, 66, 84, 102, 120, 210, 270, 318, 330, 420, 462, 510, 546, 570, 642, 672, 690, 714, 840, 870, 924, 930, 966, 1080, 1092, 1122, 1320, 1410, 1428, 1518, 1590, 1638, 1722, 1770, 1890, 1932, 2040, 2130, 2226, 2280, 2310, 2346, 2370, 2604, 2670, 2730, 2760
Offset: 1

Views

Author

Jaroslav Krizek, Oct 23 2020

Keywords

Comments

Numbers m such that A336723(m)= lcm(A000005(m), A000203(m), A007955(m)) = A007955(m).
Numbers m such that both values tau(m) and sigma(m) divide pod(m).
Numbers m such that all values m, tau(m) and sigma(m) divide pod(m); i.e. lcm(m, tau(m), sigma(m), pod(m)) = pod(m).
Supersequence of A277521.

Examples

			lcm(tau(6), sigma(6), pod(6)) = lcm(4, 12, 36) = 36 = pod(6).
		

Crossrefs

Cf. A000005 (tau), A000203 (sigma), A007955 (pod).

Programs

  • Magma
    [m: m in [1..10^5] | LCM([#Divisors(m), &+Divisors(m), &*Divisors(m)]) eq &*Divisors(m)]
    
  • Mathematica
    Select[Range[3000], LCM @@ {(d = DivisorSigma[0, #]), DivisorSigma[1, #], (pod = #^(d/2))} == pod &] (* Amiram Eldar, Oct 24 2020 *)
  • PARI
    isok(m) = my(d=divisors(m), prd=vecprod(d)); lcm([#d, vecsum(d), prd]) == prd; \\ Michel Marcus, Oct 24 2020
Showing 1-3 of 3 results.