A338406 Numbers m such that tau(m), sigma(m) and pod(m) are pairwise relatively prime.
1, 4, 16, 25, 64, 81, 100, 121, 256, 289, 484, 529, 729, 841, 1024, 1156, 1296, 1600, 1681, 1936, 2116, 2209, 2401, 2809, 3025, 3364, 3481, 4096, 4624, 5041, 5184, 6400, 6724, 6889, 7225, 7921, 8464, 8836, 10201, 11236, 11449, 11664, 12100, 12769, 13225, 13456
Offset: 1
Keywords
Examples
lcm(tau(4), sigma(4), pod(4)) = lcm(3, 7, 8) = tau(4) * sigma(4) * pod(4) = 3 * 7 * 8 = 168.
Links
- David A. Corneth, Table of n, a(n) for n = 1..10000
Programs
-
Magma
[m: m in [1..10^5] | LCM([#Divisors(m), &+Divisors(m), &*Divisors(m)]) eq #Divisors(m) * &+Divisors(m) * &*Divisors(m)]
-
Mathematica
Select[Range[15000], CoprimeQ[(d = DivisorSigma[0, #]), (s = DivisorSigma[1, #])] && CoprimeQ[d, (p = #^(d/2))] && CoprimeQ[s, p] &] (* Amiram Eldar, Oct 25 2020 *)
-
PARI
isok(m) = my(d=divisors(m), t=#d, s=vecsum(d), p=vecprod(d)); t*s*p == lcm([t,s,p]); \\ Michel Marcus, Oct 25 2020
Comments