cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A166374 Numbers whose arithmetic derivative is equal to Euler totient function: n' = phi(n).

Original entry on oeis.org

2, 9, 15, 625, 1225, 3993, 117649, 218491, 857375, 3788435, 4259571, 69302975, 136410197, 200533921, 313742585, 603439225, 1516358753, 2563893625, 3326174929, 5655792025, 10214476341, 25937424601, 29677977573, 59797108943, 283867750439, 715167055525
Offset: 1

Views

Author

Keywords

Comments

The sequence is infinite. If n=prod(pi^ei) with each pi prime, then phi(n) = n*prod((pi-1)/pi) and n' = n*sum(ei/pi). Thus every number of the form p^(p-1), where p is prime, is in this sequence. - Nathaniel Johnston, Nov 27 2010
If p > q are primes and q does not divide p-1, there is a solution in positive integers of (p-1)*(q-1) = a*p + b*q, and then p^b*q^a is in the sequence. - Robert Israel, Aug 21 2014

Crossrefs

Cf. A000010, A003415, A036878 (p^(p-1)).
Intersection of A342008 and A342009.

Programs

  • Maple
    A003415:= n -> n*add(f[2]/f[1],f=ifactors(n)[2]):
    select(numtheory:-phi = A003415, [$0..10^5]); # Robert Israel, Aug 21 2014
  • Mathematica
    (*Run the Mathematica program given in A003415 first, to define the function a as the arithmetic derivative.*) Select[Range[0, 10000], EulerPhi[ # ] == a[ # ] &]
  • Python
    from sympy import factorint, totient
    A166374 = [n for n in range(1,10**6) if sum([int(n*e/p) for p,e in factorint(n).items()]) == totient(n)] # Chai Wah Wu, Aug 22 2014, edited by Antti Karttunen, Mar 13 2021
    
  • Sage
    A166374_list = lambda n: filter(lambda k: euler_phi(k) == A003415(k), range(n))
    A166374_list(10^6) # Peter Luschny, Aug 23 2014

Extensions

Two terms added by Alonso del Arte, Oct 20 2009
Offset corrected and a(12)-a(16) from Donovan Johnson, Nov 03 2010
a(17)-a(18) from Donovan Johnson, May 09 2011
a(19)-a(24) from Donovan Johnson, Oct 01 2012
a(25)-a(28) from Giovanni Resta, Mar 13 2014
Term a(1)=0 removed and the indices in the above comments decremented by one. - Antti Karttunen, Mar 13 2021

A380888 Integers k such that k = Sum k/(p_i + j), where p_i are the prime factors of k (with multiplicity). Case j = -1.

Original entry on oeis.org

2, 9, 75, 625, 1029, 1365, 8575, 11375, 24843, 32955, 73815, 117649, 156065, 207025, 274625, 483153, 599781, 615125, 866481, 1008273, 1252815, 1337505, 1343433, 1553937, 1782105, 1955085, 2061345, 2840383, 3051015, 3432165, 3737085, 3767855, 4026275, 4998175
Offset: 1

Views

Author

Paolo P. Lava, Feb 07 2025

Keywords

Comments

2 is the only even term. - Chai Wah Wu, Apr 24 2025

Examples

			73815 = 3*5*7*19*37 = 73815/(3-1) + 73815/(5-1) + 73815/(7-1) + 73815/(19-1) + 73815/(37-1);
599781 = 3*7*13^4 = 599781/(3-1) + 599781/(7-1) + 599781*4/(13-1).
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q,h) local k,n,v; v:=[];
    for n from 1 to q do if n=add(n*k[2]/(k[1]+h),k=ifactors(n)[2]) then v:=[op(v),n]; fi;
    od; op(v); end: P(4998175,-1);

A276092 a(n) = Product_{i=1..n} prime(i)^(prime(i)-1), a(0)=1.

Original entry on oeis.org

1, 2, 18, 11250, 1323551250, 34329510752434301250, 799811863723341113907011901401250, 38919798565076223182552300534870824616780123359001250, 4052615498709835178737678586220586796222761283625319842830388618784835051250, 3679152532021669595137666762315244807517735994898621013565758767014111825486079213219685771368099483111250
Offset: 0

Views

Author

Antti Karttunen, Aug 22 2016

Keywords

Comments

Cumulative product of A036878 (after a(0)). - Rick L. Shepherd, Aug 23 2016

Examples

			For n=0 we have an empty product, thus a(0) = 1.
For n=1, a(1) = 2^1.
For n=2, a(2) = 2^1 * 3^2 = 18.
For n=3, a(3) = 2^1 * 3^2 * 5^4 = 11250.
		

Crossrefs

Subsequence of A048103.

Programs

  • Mathematica
    Table[Product[Prime[i]^(Prime[i] - 1), {i, n}], {n, 0, 9}] (* Michael De Vlieger, Aug 31 2016 *)
  • PARI
    A276092(n) = prod(i=1, n, prime(i)^(prime(i) - 1)) \\ Rick L. Shepherd, Aug 23 2016
  • Scheme
    (define (A276092 n) (let outloop ((i n) (t 1)) (if (zero? i) t (let ((p (A000040 i))) (let inloop ((j (- p 1)) (t t)) (if (zero? j) (outloop (- i 1) t) (inloop (- j 1) (* t p))))))))
    ;; Or as a recurrence:
    (definec (A276092 n) (if (zero? n) 1 (* (A276092 (- n 1)) (expt (A000040 n) (- (A000040 n) 1)))))
    

Formula

a(n) = Product_{i=1..n} prime(i)^(prime(i)-1).
a(0) = 1; and for n >= 1, a(n) = a(n-1) * A000040(n)^(A000040(n)-1).
a(n) = A276086(A057588(n)).

A180934 Numbers m such that m^k has m divisors for some k >= 1.

Original entry on oeis.org

1, 2, 3, 5, 7, 9, 11, 13, 17, 19, 23, 25, 28, 29, 31, 37, 40, 41, 43, 45, 47, 49, 53, 59, 61, 67, 71, 73, 79, 81, 83, 89, 97, 101, 103, 107, 109, 113, 121, 127, 131, 137, 139, 149, 151, 153, 157, 163, 167, 169, 173, 179, 181, 191, 193, 197, 199, 211, 223, 225, 227
Offset: 1

Views

Author

David W. Wilson, Sep 26 2010

Keywords

Comments

All primes p are in this sequence, since p^(p-1) has p divisors.
For all odd semiprimes s, s^2 is in this sequence, since s^((s-1)/2) has s divisors.

Examples

			11^10 has 11 divisors, so 11 is in the sequence.
225^7 has 225 divisors, so 225 is in the sequence.
		

Crossrefs

A000005(m^k) = m for some k >= 1.
A180935 gives the corresponding k.

Programs

  • Mathematica
    q[n_] := Module[{e = FactorInteger[n][[;; , 2]], k = 1}, While[n > Times @@ (k*e + 1), k++]; n == Times @@ (k*e + 1)]; q[1] = True; Select[Range[250], q] (* Amiram Eldar, Apr 09 2024 *)

A381215 Numbers k such that the difference between the largest and smallest element of the set of bases and exponents (including exponents = 1) in the prime factorization of k is 1.

Original entry on oeis.org

2, 8, 9, 36, 72, 81, 108, 216, 625, 15625, 117649, 5764801, 25937424601, 3138428376721, 23298085122481, 3937376385699289, 48661191875666868481, 14063084452067724991009, 104127350297911241532841, 37589973457545958193355601, 907846434775996175406740561329
Offset: 1

Views

Author

Paolo Xausa, Feb 19 2025

Keywords

Examples

			72 is a term because 72 = 2^3*3^2, the set of these bases and exponents is {2, 3} and 3 - 2 = 1.
		

Crossrefs

Positions of ones in A381214.

Programs

  • Mathematica
    Join[{2, 8, 9, 36, 72, 81, 108, 216}, Flatten[Map[#^{# - 1, # + 1} &, Prime[Range[3, 10]]]]]

Formula

For n >= 9, a(n) = A381317(n-4).

A111134 Numbers of the form p^(p^k-1) (p prime, k>=0).

Original entry on oeis.org

1, 2, 8, 9, 128, 625, 6561, 32768, 117649, 2147483648, 25937424601, 2541865828329, 23298085122481, 59604644775390625, 9223372036854775808, 48661191875666868481, 104127350297911241532841, 907846434775996175406740561329, 147808829414345923316083210206383297601
Offset: 1

Views

Author

Franz Vrabec, Oct 17 2005

Keywords

Comments

The refactorable prime powers A000961.

Crossrefs

Intersection of A000961 and A033950.
The sequence forms a subsequence of the refactorable numbers A033950; on the other hand A036878 is a subsequence.

Programs

  • Mathematica
    f[p_, max_] := Module[{k = 1, s = {}, r}, While[(r = p^(p^k - 1)) < max, AppendTo[s, r]; k++]; s]; seq[max_] := Module[{s = {1}, p = 2, s1}, While[(s1 = f[p, max]) != {}, s = Join[s, s1]; p = NextPrime[p]]; Union[s]]; seq[10^30] (* Amiram Eldar, Aug 01 2024 *)

Extensions

More terms from Robert G. Wilson v, Oct 21 2005
a(18)-a(19) from Amiram Eldar, Aug 01 2024

A130614 a(n) = p^(p-2), where p = prime(n).

Original entry on oeis.org

1, 3, 125, 16807, 2357947691, 1792160394037, 2862423051509815793, 5480386857784802185939, 39471584120695485887249589623, 3053134545970524535745336759489912159909
Offset: 1

Views

Author

Jonathan Vos Post, Jun 18 2007

Keywords

Comments

Number of labeled trees on p(n) nodes, where p(n) is the n-th prime.
Let p = prime(n). For n >= 2, (-1)^((p-1)/2) * a(n) is the discriminant of the p-th cyclotomic polynomial. - Jianing Song, May 10 2021

Crossrefs

Programs

  • Magma
    [n^(n-2) : n in [2..40] | IsPrime(n)];
    
  • Magma
    [p^(p-2): p in PrimesUpTo(50)]; // Vincenzo Librandi, Mar 27 2014
    
  • Mathematica
    Table[Prime@n^(Prime@n - 2), {n, 20}] (* Vincenzo Librandi, Mar 27 2014 *)
    #^(#-2)&/@Prime[Range[10]] (* Harvey P. Dale, Oct 18 2016 *)
  • PARI
    a(n) = my(p=prime(n)); p^(p-2) \\ Felix Fröhlich, May 10 2021

Formula

a(n) = A000272(A000040(n)).
For n >= 2, (-1)^((p-1)/2) * a(n) = A004124(p), where p = prime(n). - Jianing Song, May 10 2021

Extensions

Name edited by Felix Fröhlich, May 10 2021

A199768 Numbers whose greatest prime factor is less than their number of divisors.

Original entry on oeis.org

4, 6, 8, 12, 16, 18, 20, 24, 27, 30, 32, 36, 40, 42, 45, 48, 50, 54, 56, 60, 64, 70, 72, 75, 80, 81, 84, 90, 96, 100, 105, 108, 112, 120, 126, 128, 132, 135, 140, 144, 150, 160, 162, 168, 180, 189, 192, 196, 198, 200, 210, 216, 220, 224, 225, 240, 243, 250, 252
Offset: 1

Views

Author

Keywords

Comments

The greatest prime factor equals the number of divisors only for 1 (as defined in A006530) and numbers of the form p^(p-1) for p a prime.

Examples

			4 has 2 as its greatest prime factor, and it has 3 factors (1, 2, 4), so it is in the sequence.
10 has 5 as its greatest prime factor, but it has only 4 factors (1, 2, 5, 10), so it is not in the sequence.
		

Crossrefs

Cf. A006530 (greatest prime factor), A000005 (number of divisors), A036878 (p^(p-1)).

Programs

  • Mathematica
    Select[Range[300],FactorInteger[#][[-1,1]]Harvey P. Dale, Nov 19 2011 *)

A381317 Numbers of the form p^(p +- 1), where p is prime.

Original entry on oeis.org

2, 8, 9, 81, 625, 15625, 117649, 5764801, 25937424601, 3138428376721, 23298085122481, 3937376385699289, 48661191875666868481, 14063084452067724991009, 104127350297911241532841, 37589973457545958193355601, 907846434775996175406740561329, 480250763996501976790165756943041
Offset: 1

Views

Author

Paolo Xausa, Feb 20 2025

Keywords

Crossrefs

Union of A036878 and A104126.
Subsequence of A381215.

Programs

  • Mathematica
    Flatten[Map[#^{# - 1, # + 1} &, Prime[Range[10]]]]

A104129 Integers of the form p^(p-1)+p where p is prime.

Original entry on oeis.org

4, 12, 630, 117656, 25937424612, 23298085122494, 48661191875666868498, 104127350297911241532860, 907846434775996175406740561352, 88540901833145211536614766025207452637390
Offset: 1

Views

Author

Cino Hilliard, Mar 06 2005

Keywords

Comments

Sum of the reciprocals 1/a(n) rapidly converges to 0.3349291343132812638... - R. J. Mathar, Apr 27 2007

Crossrefs

Programs

  • Mathematica
    #^(#-1)+#&/@Prime[Range[10]] (* Harvey P. Dale, Mar 23 2025 *)

Formula

From R. J. Mathar, Apr 27 2007: (Start)
a(n) = A036878(n)+p where p=A000040(n).
For p>2, a(n) = p*[1+A085531(A005097(n-1))]. (End)

Extensions

Edited by R. J. Mathar, Apr 27 2007
Showing 1-10 of 13 results. Next