A190402 Number n for which phi(n) = phi(n'), where phi is the Euler totient function and n' the arithmetic derivative of n.
2, 4, 8, 14, 20, 27, 45, 52, 75, 148, 195, 244, 292, 364, 628, 729, 772, 1108, 1196, 1215, 1252, 1406, 1552, 1588, 1684, 1701, 1828, 2164, 2452, 2644, 2692, 2924, 2932, 3028, 3125, 3508, 3825, 3982, 3988, 4372, 4462, 4612, 4804, 4852, 4948, 5284, 5524
Offset: 1
Keywords
Links
- Nathaniel Johnston, Table of n, a(n) for n = 1..2500
Programs
-
Maple
with(numtheory); P:=proc(i) local f,n,p,pfs; for n from 1 to i do pfs:=ifactors(n)[2]; f:=n*add(op(2,p)/op(1,p),p=pfs); if phi(n)=phi(f) then print(n); fi; od; end: P(1000);
-
Mathematica
d[0] = d[1] = 0; d[n_] := n*Total[f = FactorInteger[n]; f[[All, 2]]/f[[All, 1]] ]; Reap[For[n = 1, n < 6000, n++, If[EulerPhi[n] == EulerPhi[d[n]], Sow[n]]]][[2, 1]] (* Jean-François Alcover, Apr 22 2015 *)
Comments