cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A190402 Number n for which phi(n) = phi(n'), where phi is the Euler totient function and n' the arithmetic derivative of n.

Original entry on oeis.org

2, 4, 8, 14, 20, 27, 45, 52, 75, 148, 195, 244, 292, 364, 628, 729, 772, 1108, 1196, 1215, 1252, 1406, 1552, 1588, 1684, 1701, 1828, 2164, 2452, 2644, 2692, 2924, 2932, 3028, 3125, 3508, 3825, 3982, 3988, 4372, 4462, 4612, 4804, 4852, 4948, 5284, 5524
Offset: 1

Views

Author

Paolo P. Lava, May 10 2011

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory);
    P:=proc(i)
    local f,n,p,pfs;
    for n from 1 to i do
        pfs:=ifactors(n)[2];
        f:=n*add(op(2,p)/op(1,p),p=pfs);
        if phi(n)=phi(f) then print(n); fi;
    od;
    end:
    P(1000);
  • Mathematica
    d[0] = d[1] = 0; d[n_] := n*Total[f = FactorInteger[n]; f[[All, 2]]/f[[All, 1]] ]; Reap[For[n = 1, n < 6000, n++, If[EulerPhi[n] == EulerPhi[d[n]], Sow[n]]]][[2, 1]] (* Jean-François Alcover, Apr 22 2015 *)

A342413 a(n) = gcd(phi(n), A003415(n)), where A003415(n) is the arithmetic derivative of n, and phi is Euler totient function.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 4, 6, 1, 1, 4, 1, 3, 8, 8, 1, 3, 1, 8, 2, 1, 1, 4, 10, 3, 9, 4, 1, 1, 1, 16, 2, 1, 12, 12, 1, 3, 8, 4, 1, 1, 1, 4, 3, 1, 1, 16, 14, 5, 4, 8, 1, 9, 8, 4, 2, 1, 1, 4, 1, 3, 3, 32, 6, 1, 1, 8, 2, 1, 1, 12, 1, 3, 5, 4, 6, 1, 1, 16, 54, 1, 1, 4, 2, 3, 8, 20, 1, 3, 4, 4, 2, 1, 24, 16, 1, 7, 15, 20
Offset: 1

Views

Author

Antti Karttunen, Mar 11 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Array[GCD[If[# < 2, 0, # Total[#2/#1 & @@@ FactorInteger[#]]], EulerPhi[#]] &@ Abs[#] &, 100] (* Michael De Vlieger, Mar 11 2021 *)
  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A342413(n) = gcd(eulerphi(n), A003415(n));

Formula

a(n) = gcd(A000010(n), A003415(n)).
a(n) = A003415(n) / A342414(n) = A000010(n) / A342415(n).
a(n) = A003557(n) * A342416(n).

A345051 Numbers k such that A345048(k) is equal to A345049(k).

Original entry on oeis.org

2, 6, 9, 15, 28, 496, 625, 1225, 3993, 8128, 117649, 218491, 857375, 3788435, 4259571, 33550336, 69302975, 136410197, 200533921, 313742585, 603439225, 1516358753, 2563893625, 3326174929, 5655792025, 8589869056, 10214476341
Offset: 1

Views

Author

Antti Karttunen, Jun 06 2021

Keywords

Comments

Numbers k for which A342001(n) * A051709(n) = A173557(n) * A345001(n).
Conjecture: Sequence is a disjoint union of A000396 and A166374, i.e., there are no terms of any other kind.

Crossrefs

Positions of zeros in A345050.
Cf. A000396, A166374 (subsequences).
Cf. also A345003.

Programs

Extensions

a(21)-a(27) from Amiram Eldar, Dec 08 2023

A342009 Numbers k such that the arithmetic derivative of k is a multiple of phi(k).

Original entry on oeis.org

1, 2, 4, 8, 9, 12, 15, 16, 20, 32, 36, 48, 64, 81, 108, 112, 128, 144, 180, 189, 192, 196, 225, 256, 320, 324, 400, 432, 500, 512, 528, 576, 625, 729, 768, 972, 1024, 1225, 1296, 1300, 1360, 1452, 1728, 2048, 2160, 2304, 2700, 2816, 2916, 3024, 3072, 3375, 3564, 3840, 3888, 3993, 4096, 4800, 5120, 5184, 5292, 5616, 6000
Offset: 1

Views

Author

Antti Karttunen, Mar 11 2021

Keywords

Comments

Numbers k for which A000010(k) is a divisor of A003415(k), or equally, k for which A173557(k) is a divisor of A342001(k).

Crossrefs

Cf. A000010, A003415, A166374 (subsequence), A173557, A342001, A342008.
Positions of ones in A342415.

Programs

  • Mathematica
    Select[Range[6000], Mod[If[Abs[#] < 2, 0, # Total[#2/#1 & @@@ FactorInteger[Abs@ #]]], EulerPhi[#]] == 0 &] (* Michael De Vlieger, Mar 11 2021 *)
  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    isA342009(n) = !(A003415(n)%eulerphi(n));

A301939 Integers whose arithmetic derivative is equal to their Dedekind function.

Original entry on oeis.org

8, 81, 108, 2500, 2700, 3375, 5292, 13068, 15625, 18252, 31212, 38988, 57132, 67228, 90828, 94500, 103788, 147852, 181548, 199692, 231525, 238572, 303372, 375948, 401868, 484812, 544428, 575532, 674028, 713097, 744012, 855468, 1016172, 1058841, 1101708, 1145772
Offset: 1

Views

Author

Paolo P. Lava, Mar 29 2018

Keywords

Comments

If n = Product_{k=1..j} p_k ^ i_k with each p_k prime, then psi(n) = n * Product_{k=1..j} (p_k + 1)/p_k and n' = n*Sum_{k=1..j} i_k/p_k.
Thus every number of the form p^(p+1), where p is prime, is in the sequence.
The sequence also contains every number of the form 108*p^2 where p is a prime > 3, or 108*p^3*(p+2) where p > 3 is in A001359. - Robert Israel, Mar 29 2018

Examples

			5292 = 2^2 * 3^3 * 7^2.
n' = 5292*(2/2 + 3/3 + 2/7) = 12096,
psi(n) = 5292*(1 + 1/2)*(1 + 1/3)*(1 + 1/7) = 12096.
		

Crossrefs

Cf. A001359, A001615, A003415, A166374, A342458. A345005 (gives the odd terms).
Subsequence of A345003.

Programs

  • Maple
    with(numtheory): P:=proc(n) local a,p; a:=ifactors(n)[2];
    if add(op(2,p)/op(1,p),p=a)=mul(1+1/op(1,p),p=a) then n; fi; end:
    seq(P(i),i=1..10^6);
  • Mathematica
    selQ[n_] := Module[{f = FactorInteger[n], p, e}, Product[{p, e} = pe; p^e + p^(e-1), {pe, f}] == Sum[{p, e} = pe; (n/p)e, {pe, f}]];
    Select[Range[10^6], selQ] (* Jean-François Alcover, Oct 16 2020 *)
  • PARI
    dpsi(f) = prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1));
    ader(n, f) = sum(i=1, #f~, n/f[i, 1]*f[i, 2]);
    isok(n) = my(f=factor(n)); dpsi(f) == ader(n, f); \\ Michel Marcus, Mar 29 2018

Formula

Solutions of the equation n' = psi(n).

A342008 Numbers k such that Euler totient phi(k) is a multiple of the arithmetic derivative of k.

Original entry on oeis.org

2, 3, 5, 7, 9, 11, 13, 15, 17, 19, 23, 25, 29, 31, 35, 37, 41, 43, 47, 49, 53, 59, 61, 67, 71, 73, 79, 83, 89, 95, 97, 101, 103, 107, 109, 113, 119, 121, 127, 131, 137, 139, 143, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193, 197, 199, 209, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281
Offset: 1

Views

Author

Antti Karttunen, Mar 12 2021

Keywords

Comments

Numbers k for which A000010(k) is a multiple of A003415(k), or equally, k for which A173557(k) is a multiple of A342001(k).

Crossrefs

Subsequences: A000040, A166374, A342418 (composite terms).
Positions of ones in A342414.

Programs

  • Mathematica
    Select[Range[2, 281], Mod[EulerPhi[#], If[# < 2, 0, # Total[#2/#1 & @@@ FactorInteger[#]] ] &@ Abs[#]] == 0 &] (* Michael De Vlieger, Mar 12 2021 *)
  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    isA342008(n) = ((n>1)&&!(eulerphi(n)%A003415(n)));
    for(n=2,2^8,if(isA342008(n),print1(n,", ")));

A189057 Numbers n for which phi(n)=sigma(n'), where phi is the Euler totient function, sigma is the sum of divisors and n' the arithmetic derivative of n.

Original entry on oeis.org

2, 57, 175, 357, 381, 543, 777, 903, 2379, 3027, 6807, 25823, 47047, 74333, 82621, 136213, 153425, 163471, 194873, 230547, 257799, 259555, 265111, 269545, 285439, 289009, 302403, 305305, 311395, 354365, 416005, 484169, 569245, 718333, 755885, 781501, 1012505
Offset: 1

Views

Author

Paolo P. Lava, May 17 2011

Keywords

Examples

			phi(57)=36. 57'=22 and sigma(22)=36
phi(1012505)=725760. 1012505'=310156 and sigma(310156)=725760
		

Crossrefs

Programs

  • Maple
    with(numtheory);
    P:=proc(i)
    local f, n, p, pfs;
    for n from 1 by 1 to i do
        pfs:=ifactors(n)[2];
        f:=n*add(op(2, p)/op(1, p), p=pfs);
        if phi(n)=sigma(f) then print(n); fi;
    od;
    end:
    P(1000000)

A217715 Numbers equal to the Euler totient function of their arithmetic derivative: k = phi(k').

Original entry on oeis.org

16, 30, 32, 48, 54, 64, 80, 120, 176, 288, 368, 432, 464, 656, 848, 858, 864, 1328, 1424, 1722, 1808, 1944, 2096, 2768, 2864, 2916, 3056, 3728, 3824, 4016, 4496, 4688, 5744, 5832, 6704, 6896, 7088, 7856, 8144, 9488, 10256, 10448, 10544, 10928, 11504, 11888
Offset: 1

Views

Author

Paolo P. Lava, Mar 21 2013

Keywords

Comments

If p is a Sophie Germain prime (A005384) then m = 16*p is a term. Indeed: m' = (16*p)' = 32*p + 16 = 16*(2*p + 1) and phi(m') = phi(32*p + 16) = phi(16*(2*p + 1)) = 8*phi(2*p + 1) = 8*2*p = m for odd p. If p = 2 then m = 16*2 = 32 is a term. - Marius A. Burtea, Apr 10 2022

Examples

			For k=368, k'=752 and phi(752)=368.
		

Crossrefs

Programs

  • Magma
    f:=func;  [k:k in [2..12000]| k eq EulerPhi(Floor(f(k)))]; // Marius A. Burtea, Apr 09 2022
  • Maple
    with(numtheory);
    A217715:= proc(q) local n,p;
    for n from 1 to q do
    if phi(n*add(op(2,p)/op(1,p),p=ifactors(n)[2]))=n then print(n); fi; od; end:
    A217715(10^6);
  • Mathematica
    aQ[1]=1; aQ[n_] := EulerPhi[n * Total[#2/#1 & @@@ FactorInteger[n]]] == n; Select[Range[10000], aQ] (* Amiram Eldar, Jul 11 2019 *)

A248815 Numbers equal to the arithmetic derivative of their Euler totient function.

Original entry on oeis.org

31, 32, 80, 81, 112, 176, 192, 244, 368, 752, 859, 912, 944, 1296, 1328, 1712, 1723, 2672, 2864, 3024, 3632, 4208, 5552, 5744, 6128, 6156, 7472, 7664, 8048, 8748, 9008, 9392, 11504, 13424, 13808, 14192, 15728, 16304, 18992, 20412, 20528, 20912, 21104, 21872
Offset: 1

Views

Author

Paolo P. Lava, Oct 15 2014

Keywords

Comments

Solutions of the equation n = (phi(n))’.

Examples

			Euler totient function of 32 is 16 and the arithmetic derivative of 16 is 32.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:= proc(q) local a,n,p; for n from 1 to q do
    a:=phi(n)*add(op(2,p)/op(1,p),p=ifactors(phi(n))[2]);
    if n=a then print(n); fi; od; end: P(10^9);
  • Mathematica
    deriv[n_] := n*Total[#2/#1 & @@@ FactorInteger[n]]; aQ[1] = 1; aQ[n_] := deriv[EulerPhi[n]] == n; Select[Range[25000], aQ] (* Amiram Eldar, Jul 11 2019 *)

A342418 Composite numbers k such that Euler totient phi(k) is a multiple of the arithmetic derivative of k.

Original entry on oeis.org

9, 15, 25, 35, 49, 95, 119, 121, 143, 169, 209, 287, 289, 319, 323, 343, 361, 377, 527, 529, 559, 625, 779, 841, 899, 923, 961, 989, 1007, 1189, 1199, 1225, 1343, 1349, 1369, 1681, 1763, 1849, 1919, 2159, 2197, 2209, 2507, 2759, 2809, 2911, 3239, 3481, 3599, 3721, 3827, 3993, 4031, 4489, 4607, 5041, 5183, 5207, 5249
Offset: 1

Views

Author

Antti Karttunen, Mar 12 2021

Keywords

Comments

The term 343 is the first one that does not occur in A070160, and 625 is the second.

Crossrefs

Cf. A000010, A003415, A166374 (a subsequence after its initial terms).
Subsequence of A342008.
Cf. also A070160.

Programs

  • Mathematica
    Select[Range[5300], And[CompositeQ@ #, Mod[EulerPhi[#], Times @@ If[# < 2, 0, # Total[#2/#1 & @@@ FactorInteger[#]] ]] == 0] &] (* Michael De Vlieger, Mar 12 2021 *)
  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    isA342418(n) = ((n>1)&&!isprime(n)&&!(eulerphi(n)%A003415(n)));
Showing 1-10 of 11 results. Next