cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A342414 a(n) = A003415(n) / gcd(phi(n),A003415(n)), where A003415(n) is the arithmetic derivative of n, and phi is Euler totient function.

Original entry on oeis.org

0, 1, 1, 2, 1, 5, 1, 3, 1, 7, 1, 4, 1, 3, 1, 4, 1, 7, 1, 3, 5, 13, 1, 11, 1, 5, 3, 8, 1, 31, 1, 5, 7, 19, 1, 5, 1, 7, 2, 17, 1, 41, 1, 12, 13, 25, 1, 7, 1, 9, 5, 7, 1, 9, 2, 23, 11, 31, 1, 23, 1, 11, 17, 6, 3, 61, 1, 9, 13, 59, 1, 13, 1, 13, 11, 20, 3, 71, 1, 11, 2, 43, 1, 31, 11, 15, 4, 7, 1, 41, 5, 24, 17, 49, 1, 17
Offset: 1

Views

Author

Antti Karttunen, Mar 11 2021

Keywords

Crossrefs

Cf. A000010, A003415, A342001, A342008 (positions of ones), A342413, A342415, A342416.

Programs

  • Mathematica
    Array[#1/GCD[#1, #2] & @@ {If[# < 2, 0, # Total[#2/#1 & @@@ FactorInteger[#]]] &@ Abs[#], EulerPhi[#]} &, 96] (* Michael De Vlieger, Mar 11 2021 *)
  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A342414(n) = { my(u=A003415(n)); (u/gcd(eulerphi(n),u)); };

Formula

a(n) = A003415(n) / A342413(n) = A003415(n) / gcd(A000010(n),A003415(n)).
a(n) = A342001(n) / A342416(n).

A342458 a(n) = gcd(A001615(n), A003415(n)), where A001615 is Dedekind psi, and A003415 is the arithmetic derivative of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 12, 6, 1, 1, 8, 1, 3, 8, 8, 1, 3, 1, 12, 2, 1, 1, 4, 10, 3, 9, 16, 1, 1, 1, 16, 2, 1, 12, 12, 1, 3, 8, 4, 1, 1, 1, 24, 3, 1, 1, 16, 14, 45, 4, 28, 1, 27, 8, 4, 2, 1, 1, 4, 1, 3, 3, 96, 6, 1, 1, 36, 2, 1, 1, 12, 1, 3, 5, 40, 6, 1, 1, 16, 108, 1, 1, 4, 2, 3, 8, 4, 1, 3, 4, 48, 2, 1, 24, 16, 1, 7, 3, 20
Offset: 1

Views

Author

Antti Karttunen, Mar 28 2021

Keywords

Crossrefs

Cf. A301939 (gives the positions at which a(n) = A001615(n) = A003415(n)).
Cf. also A175732, A342413, A342915.

Programs

  • PARI
    A001615(n) = if(1==n,n, my(f=factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1))); \\ After code in A001615
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A342458(n) = gcd(A001615(n), A003415(n));

Formula

a(n) = gcd(A001615(n), A003415(n)).
a(n) = A003557(n) * A342459(n).
a(n) = A003415(n) / A342919(n).

A342416 a(n) = gcd(A173557(n), A342001(n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 3, 8, 1, 1, 1, 1, 4, 2, 1, 1, 1, 2, 3, 1, 2, 1, 1, 1, 1, 2, 1, 12, 2, 1, 3, 8, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 4, 4, 1, 1, 8, 1, 2, 1, 1, 2, 1, 3, 1, 1, 6, 1, 1, 4, 2, 1, 1, 1, 1, 3, 1, 2, 6, 1, 1, 2, 2, 1, 1, 2, 2, 3, 8, 5, 1, 1, 4, 2, 2, 1, 24, 1, 1, 1, 5, 2, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Antti Karttunen, Mar 11 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Array[GCD[#2, #1/#3] & @@ {If[#1 < 2, 0, #1 Total[#2/#1 & @@@ #2]], If[#1 == 1, 1, Times @@ Map[# - 1 &, #2[[All, 1]] ]], #1/Times @@ #2[[All, 1]]} & @@ {Abs[#], FactorInteger[#]} &, 91] (* Michael De Vlieger, Mar 11 2021 *)
  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A003557(n) = (n/factorback(factorint(n)[, 1]));
    A342413(n) = gcd(eulerphi(n), A003415(n));
    A342416(n) = (A342413(n)/A003557(n));

Formula

a(n) = A342413(n) / A003557(n) = gcd(A173557(n), A342001(n)).

A348492 Greatest common divisor of the arithmetic derivative (A003415) and Pillai's arithmetical function (A018804).

Original entry on oeis.org

1, 1, 1, 4, 1, 5, 1, 4, 3, 1, 1, 8, 1, 3, 1, 16, 1, 21, 1, 24, 5, 1, 1, 4, 5, 15, 27, 8, 1, 1, 1, 16, 7, 1, 3, 12, 1, 3, 1, 4, 1, 1, 1, 24, 3, 5, 1, 16, 7, 15, 5, 8, 1, 81, 1, 4, 1, 1, 1, 4, 1, 3, 3, 64, 9, 1, 1, 24, 1, 1, 1, 12, 1, 3, 5, 8, 3, 1, 1, 16, 27, 1, 1, 4, 11, 15, 1, 140, 1, 3, 5, 24, 1, 1, 3, 16, 1, 7
Offset: 1

Views

Author

Antti Karttunen, Oct 21 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Array[GCD[Total@ GCD[#, Range[#]], # Total[#2/#1 & @@@ FactorInteger[#]]] &, 98] (* Michael De Vlieger, Oct 21 2021 *)
  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A018804(n) = sumdiv(n, d, n*eulerphi(d)/d); \\ From A018804
    A348492(n) = gcd(A003415(n), A018804(n));

Formula

a(n) = gcd(A003415(n), A018804(n)).
For n > 1, a(n) = A003415(n) / A348493(n).
a(n) = A003557(n) * A348494(n).

A342415 a(n) = phi(n) / gcd(phi(n),A003415(n)), where A003415(n) is the arithmetic derivative of n, and phi is Euler totient function.

Original entry on oeis.org

1, 1, 2, 1, 4, 2, 6, 1, 1, 4, 10, 1, 12, 2, 1, 1, 16, 2, 18, 1, 6, 10, 22, 2, 2, 4, 2, 3, 28, 8, 30, 1, 10, 16, 2, 1, 36, 6, 3, 4, 40, 12, 42, 5, 8, 22, 46, 1, 3, 4, 8, 3, 52, 2, 5, 6, 18, 28, 58, 4, 60, 10, 12, 1, 8, 20, 66, 4, 22, 24, 70, 2, 72, 12, 8, 9, 10, 24, 78, 2, 1, 40, 82, 6, 32, 14, 7, 2, 88, 8, 18, 11, 30
Offset: 1

Views

Author

Antti Karttunen, Mar 11 2021

Keywords

Crossrefs

Cf. A000010, A003415, A173557, A342009 (positions of ones), A342413, A342414, A342416.

Programs

  • Mathematica
    Array[#2/GCD[#1, #2] & @@ {If[# < 2, 0, # Total[#2/#1 & @@@ FactorInteger[#]]] &@ Abs[#], EulerPhi[#]} &, 93] (* Michael De Vlieger, Mar 11 2021 *)
  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A342415(n) = { my(u=eulerphi(n)); (u/gcd(u,A003415(n))); };

Formula

a(n) = A000010(n) / A342413(n) = A000010(n) / gcd(A000010(n),A003415(n)).
a(n) = A173557(n) / A342416(n).

A348028 Greatest common divisor of A003415 (arithmetic derivative) and sigma, the sum of divisors function.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 4, 1, 3, 8, 1, 1, 3, 1, 6, 2, 1, 1, 4, 1, 3, 1, 8, 1, 1, 1, 1, 2, 1, 12, 1, 1, 3, 8, 2, 1, 1, 1, 12, 39, 1, 1, 4, 1, 3, 4, 14, 1, 3, 8, 4, 2, 1, 1, 4, 1, 3, 1, 1, 6, 1, 1, 18, 2, 1, 1, 39, 1, 3, 1, 20, 6, 1, 1, 2, 1, 1, 1, 4, 2, 3, 8, 20, 1, 3, 4, 24, 2, 1, 24, 4, 1, 1, 3, 7, 1, 1, 1, 2, 1
Offset: 1

Views

Author

Antti Karttunen, Sep 25 2021

Keywords

Crossrefs

Programs

  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A348028(n) = gcd(sigma(n), A003415(n));

Formula

a(n) = gcd(A000203(n), A003415(n)).
Showing 1-6 of 6 results.