cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A342915 a(n) = gcd(1+n, A001615(n)), where A001615 is Dedekind psi, n * Product_{p|n, p prime} (1 + 1/p).

Original entry on oeis.org

1, 3, 4, 1, 6, 1, 8, 3, 2, 1, 12, 1, 14, 3, 8, 1, 18, 1, 20, 3, 2, 1, 24, 1, 2, 3, 4, 1, 30, 1, 32, 3, 2, 1, 12, 1, 38, 3, 8, 1, 42, 1, 44, 9, 2, 1, 48, 1, 2, 3, 4, 1, 54, 1, 8, 3, 2, 1, 60, 1, 62, 3, 32, 1, 6, 1, 68, 3, 2, 1, 72, 1, 74, 3, 4, 1, 6, 1, 80, 9, 2, 1, 84, 1, 2, 3, 8, 1, 90, 1, 4, 3, 2, 1, 24, 1, 98, 3, 4, 1, 102
Offset: 1

Views

Author

Antti Karttunen, Mar 29 2021

Keywords

Crossrefs

Cf. also A049559, A342458.
After n=1 differs from A143771 for the first time at n=44, where a(44) = 9, while A143771(44) = 3.

Programs

  • Mathematica
    psi[n_] := If[n==1, 1, Times @@ ((#1+1)*#1^(#2-1)& @@@ FactorInteger[n])];
    a[n_] := GCD[n+1, psi[n]];
    Array[a, 105] (* Jean-François Alcover, Dec 22 2021 *)
  • PARI
    A001615(n) = if(1==n,n, my(f=factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1))); \\ After code in A001615
    A342915(n) = gcd(1+n,A001615(n));

Formula

a(n) = gcd(1+n, A001615(n)).
a(n) = (1+n) / A342916(n) = A001615(n) / A342917(n).

A348492 Greatest common divisor of the arithmetic derivative (A003415) and Pillai's arithmetical function (A018804).

Original entry on oeis.org

1, 1, 1, 4, 1, 5, 1, 4, 3, 1, 1, 8, 1, 3, 1, 16, 1, 21, 1, 24, 5, 1, 1, 4, 5, 15, 27, 8, 1, 1, 1, 16, 7, 1, 3, 12, 1, 3, 1, 4, 1, 1, 1, 24, 3, 5, 1, 16, 7, 15, 5, 8, 1, 81, 1, 4, 1, 1, 1, 4, 1, 3, 3, 64, 9, 1, 1, 24, 1, 1, 1, 12, 1, 3, 5, 8, 3, 1, 1, 16, 27, 1, 1, 4, 11, 15, 1, 140, 1, 3, 5, 24, 1, 1, 3, 16, 1, 7
Offset: 1

Views

Author

Antti Karttunen, Oct 21 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Array[GCD[Total@ GCD[#, Range[#]], # Total[#2/#1 & @@@ FactorInteger[#]]] &, 98] (* Michael De Vlieger, Oct 21 2021 *)
  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A018804(n) = sumdiv(n, d, n*eulerphi(d)/d); \\ From A018804
    A348492(n) = gcd(A003415(n), A018804(n));

Formula

a(n) = gcd(A003415(n), A018804(n)).
For n > 1, a(n) = A003415(n) / A348493(n).
a(n) = A003557(n) * A348494(n).

A342919 a(n) = A003415(n) / gcd(A001615(n), A003415(n)), where A001615 is Dedekind psi, and A003415 is the arithmetic derivative of n.

Original entry on oeis.org

0, 1, 1, 2, 1, 5, 1, 1, 1, 7, 1, 2, 1, 3, 1, 4, 1, 7, 1, 2, 5, 13, 1, 11, 1, 5, 3, 2, 1, 31, 1, 5, 7, 19, 1, 5, 1, 7, 2, 17, 1, 41, 1, 2, 13, 25, 1, 7, 1, 1, 5, 2, 1, 3, 2, 23, 11, 31, 1, 23, 1, 11, 17, 2, 3, 61, 1, 2, 13, 59, 1, 13, 1, 13, 11, 2, 3, 71, 1, 11, 1, 43, 1, 31, 11, 15, 4, 35, 1, 41, 5, 2, 17, 49, 1, 17, 1, 11, 25
Offset: 1

Views

Author

Antti Karttunen, Mar 29 2021

Keywords

Crossrefs

Programs

  • PARI
    A001615(n) = if(1==n,n, my(f=factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1))); \\ After code in A001615
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A342919(n) = { my(u=A003415(n)); (u/gcd(u, A001615(n))); };

Formula

a(n) = A003415(n) / A342458(n) = A003415(n) / gcd(A001615(n), A003415(n)).
a(n) = A342001(n) / A342459(n).

A301939 Integers whose arithmetic derivative is equal to their Dedekind function.

Original entry on oeis.org

8, 81, 108, 2500, 2700, 3375, 5292, 13068, 15625, 18252, 31212, 38988, 57132, 67228, 90828, 94500, 103788, 147852, 181548, 199692, 231525, 238572, 303372, 375948, 401868, 484812, 544428, 575532, 674028, 713097, 744012, 855468, 1016172, 1058841, 1101708, 1145772
Offset: 1

Views

Author

Paolo P. Lava, Mar 29 2018

Keywords

Comments

If n = Product_{k=1..j} p_k ^ i_k with each p_k prime, then psi(n) = n * Product_{k=1..j} (p_k + 1)/p_k and n' = n*Sum_{k=1..j} i_k/p_k.
Thus every number of the form p^(p+1), where p is prime, is in the sequence.
The sequence also contains every number of the form 108*p^2 where p is a prime > 3, or 108*p^3*(p+2) where p > 3 is in A001359. - Robert Israel, Mar 29 2018

Examples

			5292 = 2^2 * 3^3 * 7^2.
n' = 5292*(2/2 + 3/3 + 2/7) = 12096,
psi(n) = 5292*(1 + 1/2)*(1 + 1/3)*(1 + 1/7) = 12096.
		

Crossrefs

Cf. A001359, A001615, A003415, A166374, A342458. A345005 (gives the odd terms).
Subsequence of A345003.

Programs

  • Maple
    with(numtheory): P:=proc(n) local a,p; a:=ifactors(n)[2];
    if add(op(2,p)/op(1,p),p=a)=mul(1+1/op(1,p),p=a) then n; fi; end:
    seq(P(i),i=1..10^6);
  • Mathematica
    selQ[n_] := Module[{f = FactorInteger[n], p, e}, Product[{p, e} = pe; p^e + p^(e-1), {pe, f}] == Sum[{p, e} = pe; (n/p)e, {pe, f}]];
    Select[Range[10^6], selQ] (* Jean-François Alcover, Oct 16 2020 *)
  • PARI
    dpsi(f) = prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1));
    ader(n, f) = sum(i=1, #f~, n/f[i, 1]*f[i, 2]);
    isok(n) = my(f=factor(n)); dpsi(f) == ader(n, f); \\ Michel Marcus, Mar 29 2018

Formula

Solutions of the equation n' = psi(n).

A342459 a(n) = gcd(A048250(n), A342001(n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 4, 1, 3, 8, 1, 1, 1, 1, 6, 2, 1, 1, 1, 2, 3, 1, 8, 1, 1, 1, 1, 2, 1, 12, 2, 1, 3, 8, 1, 1, 1, 1, 12, 1, 1, 1, 2, 2, 9, 4, 14, 1, 3, 8, 1, 2, 1, 1, 2, 1, 3, 1, 3, 6, 1, 1, 18, 2, 1, 1, 1, 1, 3, 1, 20, 6, 1, 1, 2, 4, 1, 1, 2, 2, 3, 8, 1, 1, 1, 4, 24, 2, 1, 24, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Antti Karttunen, Mar 28 2021

Keywords

Crossrefs

Programs

Formula

a(n) = A342458(n) / A003557(n) = gcd(A048250(n), A342001(n)).
a(n) = A342001(n) / A342919(n).

A348028 Greatest common divisor of A003415 (arithmetic derivative) and sigma, the sum of divisors function.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 4, 1, 3, 8, 1, 1, 3, 1, 6, 2, 1, 1, 4, 1, 3, 1, 8, 1, 1, 1, 1, 2, 1, 12, 1, 1, 3, 8, 2, 1, 1, 1, 12, 39, 1, 1, 4, 1, 3, 4, 14, 1, 3, 8, 4, 2, 1, 1, 4, 1, 3, 1, 1, 6, 1, 1, 18, 2, 1, 1, 39, 1, 3, 1, 20, 6, 1, 1, 2, 1, 1, 1, 4, 2, 3, 8, 20, 1, 3, 4, 24, 2, 1, 24, 4, 1, 1, 3, 7, 1, 1, 1, 2, 1
Offset: 1

Views

Author

Antti Karttunen, Sep 25 2021

Keywords

Crossrefs

Programs

  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A348028(n) = gcd(sigma(n), A003415(n));

Formula

a(n) = gcd(A000203(n), A003415(n)).
Showing 1-6 of 6 results.