cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A344773 Number of divisors d of n for which A342915(d) = A342915(n), where A342915(n) = gcd(1+n, psi(n)).

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 4, 1, 2, 1, 3, 1, 3, 1, 2, 1, 2, 1, 5, 1, 2, 2, 3, 1, 4, 1, 3, 1, 2, 1, 6, 1, 2, 1, 4, 1, 3, 1, 1, 2, 2, 1, 7, 1, 2, 2, 3, 1, 4, 1, 4, 1, 2, 1, 7, 1, 2, 1, 4, 2, 4, 1, 2, 1, 3, 1, 8, 1, 2, 2, 3, 1, 3, 1, 1, 2, 2, 1, 7, 1, 2, 1, 4, 1, 6, 1, 2, 1, 2, 1, 8, 1, 3, 2, 4, 1, 4, 1, 1, 2
Offset: 1

Views

Author

Antti Karttunen, May 31 2021

Keywords

Crossrefs

Cf. also A344774.

Programs

Formula

a(n) = Sum_{d|n} [A342915(d) = A342915(n)], where [ ] is the Iverson bracket.
a(n) <= A344771(n).

A344771 Ordinal transform of A342915, where A342915(n) = gcd(1+n, psi(n)).

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 1, 2, 1, 4, 1, 5, 1, 3, 2, 6, 1, 7, 1, 4, 2, 8, 1, 9, 3, 5, 2, 10, 1, 11, 1, 6, 4, 12, 2, 13, 1, 7, 3, 14, 1, 15, 1, 1, 5, 16, 1, 17, 6, 8, 3, 18, 1, 19, 4, 9, 7, 20, 1, 21, 1, 10, 2, 22, 2, 23, 1, 11, 8, 24, 1, 25, 1, 12, 4, 26, 3, 27, 1, 2, 9, 28, 1, 29, 10, 13, 5, 30, 1, 31, 5, 14, 11, 32, 2, 33, 1, 15
Offset: 1

Views

Author

Antti Karttunen, May 31 2021

Keywords

Comments

Number of values of k, 1 <= k <= n, with A342915(k) = A342915(n).
a(p) = 1 for all primes p (and for some other numbers as well).

Crossrefs

Differs from A339914 for the first time at n=44, where a(44) = 1, while A339914(44) = 8.

Programs

  • Mathematica
    psi[n_] := If[n= 1, 1, Times@@((#1+1)*#1^(#2-1)& @@@ FactorInteger[n])];
    A342915[n_] := GCD[n+1, psi[n]];
    b[_] = 0;
    a[n_] := a[n] = With[{t = A342915[n]}, b[t] = b[t]+1];
    Array[a, 105] (* Jean-François Alcover, Dec 22 2021 *)
  • PARI
    up_to = 65537;
    ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; };
    A001615(n) = if(1==n,n, my(f=factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1)));
    A342915(n) = gcd(1+n,A001615(n));
    v344771 = ordinal_transform(vector(up_to,n,A342915(n)));
    A344771(n) = v344771[n];

Formula

a(n) <= A344773(n).

A143771 a(n) = gcd(k + n/k), where k is over all divisors of n.

Original entry on oeis.org

2, 3, 4, 1, 6, 1, 8, 3, 2, 1, 12, 1, 14, 3, 8, 1, 18, 1, 20, 3, 2, 1, 24, 1, 2, 3, 4, 1, 30, 1, 32, 3, 2, 1, 12, 1, 38, 3, 8, 1, 42, 1, 44, 3, 2, 1, 48, 1, 2, 3, 4, 1, 54, 1, 8, 3, 2, 1, 60, 1, 62, 3, 8, 1, 6, 1, 68, 3, 2, 1, 72, 1, 74, 3, 4, 1, 6, 1, 80, 3, 2, 1, 84, 1, 2, 3, 8, 1, 90, 1, 4, 3, 2, 1, 24, 1
Offset: 1

Views

Author

Leroy Quet, Aug 31 2008

Keywords

Comments

If n is the m-th composite, then a(n) = A143772(m).
If n is prime, then a(n) is defined as n+1, since a(n) = gcd(1+n, n+1).

Examples

			a(1) = gcd(1+1) = 2, i.e., the greatest common divisor of a singular set [2].
a(9) = gcd(1+9, 3+3, 9+1) = 2.
a(20) = gcd(1+20, 2+10, 4+5, 5+4, 10+2, 20+1) = 3.
a(44) = gcd(1+44, 2+22, 4+11, 11+4, 22+2, 44+1) = 3.
		

Crossrefs

Cf. A143772, A339873, A339914, A342918 [= (1+n) / a(n)].
After n=1 differs from A342915 for the first time at n=44, where a(44) = 3, while A342915(44) = 9.

Programs

  • Maple
    A143771 := proc(n) local dvs ; dvs := convert(numtheory[divisors](n),list) ; igcd(seq( op(i,dvs)+n/op(i,dvs), i=1..nops(dvs))) ; end: for n from 2 to 140 do printf("%d,",A143771(n)) ; od: # R. J. Mathar, Sep 05 2008
  • Mathematica
    Table[GCD @@ Map[# + n/# &, Divisors@ n], {n, 2, 96}] (* Michael De Vlieger, Oct 30 2017 *)
  • PARI
    a(n) = my(d = divisors(n)); gcd(vector(#d, k, d[k]+n/d[k])); \\ Michel Marcus, Oct 05 2015

Extensions

Extended by R. J. Mathar, Sep 05 2008
Term a(1) = 2 prepended and Example-section extended by Antti Karttunen, Mar 29 2021

A342458 a(n) = gcd(A001615(n), A003415(n)), where A001615 is Dedekind psi, and A003415 is the arithmetic derivative of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 12, 6, 1, 1, 8, 1, 3, 8, 8, 1, 3, 1, 12, 2, 1, 1, 4, 10, 3, 9, 16, 1, 1, 1, 16, 2, 1, 12, 12, 1, 3, 8, 4, 1, 1, 1, 24, 3, 1, 1, 16, 14, 45, 4, 28, 1, 27, 8, 4, 2, 1, 1, 4, 1, 3, 3, 96, 6, 1, 1, 36, 2, 1, 1, 12, 1, 3, 5, 40, 6, 1, 1, 16, 108, 1, 1, 4, 2, 3, 8, 4, 1, 3, 4, 48, 2, 1, 24, 16, 1, 7, 3, 20
Offset: 1

Views

Author

Antti Karttunen, Mar 28 2021

Keywords

Crossrefs

Cf. A301939 (gives the positions at which a(n) = A001615(n) = A003415(n)).
Cf. also A175732, A342413, A342915.

Programs

  • PARI
    A001615(n) = if(1==n,n, my(f=factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1))); \\ After code in A001615
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A342458(n) = gcd(A001615(n), A003415(n));

Formula

a(n) = gcd(A001615(n), A003415(n)).
a(n) = A003557(n) * A342459(n).
a(n) = A003415(n) / A342919(n).

A342916 a(n) = (1+n) / gcd(1+n, A001615(n)), where A001615 is Dedekind psi, n * Product_{p|n, p prime} (1 + 1/p).

Original entry on oeis.org

2, 1, 1, 5, 1, 7, 1, 3, 5, 11, 1, 13, 1, 5, 2, 17, 1, 19, 1, 7, 11, 23, 1, 25, 13, 9, 7, 29, 1, 31, 1, 11, 17, 35, 3, 37, 1, 13, 5, 41, 1, 43, 1, 5, 23, 47, 1, 49, 25, 17, 13, 53, 1, 55, 7, 19, 29, 59, 1, 61, 1, 21, 2, 65, 11, 67, 1, 23, 35, 71, 1, 73, 1, 25, 19, 77, 13, 79, 1, 9, 41, 83, 1, 85, 43, 29, 11, 89, 1, 91, 23, 31
Offset: 1

Views

Author

Antti Karttunen, Mar 29 2021

Keywords

Comments

It is conjectured that a(n) = 1 only when n is a prime, A000040. See Thomas Ordowski's May 21 2017 problem in A001615.

Crossrefs

Cf. also A160596.
After n=1 differs from A342918 for the first time at n=44, where a(44) = 5, while A342918(44) = 15.

Programs

  • PARI
    A001615(n) = if(1==n,n, my(f=factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1))); \\ After code in A001615
    A342916(n) = ((1+n)/gcd(1+n,A001615(n)));

Formula

a(n) = (1+n) / A342915(n) = (1+n) / gcd(1+n, A001615(n)).

Extensions

Incorrect A-number in the formula corrected by Antti Karttunen, May 31 2021

A342917 a(n) = A001615(n) / gcd(1+n, A001615(n)), where A001615 is Dedekind psi, n * Product_{p|n, p prime} (1 + 1/p).

Original entry on oeis.org

1, 1, 1, 6, 1, 12, 1, 4, 6, 18, 1, 24, 1, 8, 3, 24, 1, 36, 1, 12, 16, 36, 1, 48, 15, 14, 9, 48, 1, 72, 1, 16, 24, 54, 4, 72, 1, 20, 7, 72, 1, 96, 1, 8, 36, 72, 1, 96, 28, 30, 18, 84, 1, 108, 9, 32, 40, 90, 1, 144, 1, 32, 3, 96, 14, 144, 1, 36, 48, 144, 1, 144, 1, 38, 30, 120, 16, 168, 1, 16, 54, 126, 1, 192, 54, 44, 15, 144
Offset: 1

Views

Author

Antti Karttunen, Mar 29 2021

Keywords

Comments

The scatter plot shows two distinct "fans" separated by a gap. Why?

Crossrefs

Cf. also A160595.

Programs

  • PARI
    A001615(n) = if(1==n,n, my(f=factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1))); \\ After code in A001615
    A342917(n) = { my(u=A001615(n)); (u/gcd(1+n,u)); };

Formula

a(n) = A001615(n) / A342915(n) = A001615(n) / gcd(1+n, A001615(n)).
Showing 1-6 of 6 results.