cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A345003 Numbers k for which A344998(k) = A344999(k).

Original entry on oeis.org

6, 8, 28, 81, 108, 496, 2500, 2700, 3375, 5292, 8128, 13068, 15625, 18252, 31212, 38988, 57132, 67228, 90828, 94500, 103788, 147852, 181548, 199692, 231525, 238572, 303372, 375948, 401868, 484812, 544428, 575532, 674028, 713097, 744012, 855468, 1016172, 1058841, 1101708, 1145772, 1236492, 1283148, 1379052, 1500625
Offset: 1

Views

Author

Antti Karttunen, Jun 05 2021

Keywords

Comments

Numbers k such that A345001(k)*A048250(k) is equal to A342001(k)*A344753(k).
Conjecture: Sequence is a disjoint union of A000396 and A301939.

Crossrefs

Positions of zeros in A345043.
Cf. A000396, A301939, A345004, A345005 (subsequences).
Cf. also A345051.

Programs

A345048 a(n) = A342001(n) * A051709(n).

Original entry on oeis.org

0, 0, 0, 2, 0, 10, 0, 9, 2, 14, 0, 64, 0, 18, 16, 28, 0, 63, 0, 120, 20, 26, 0, 220, 2, 30, 12, 192, 0, 620, 0, 75, 28, 38, 24, 310, 0, 42, 32, 442, 0, 984, 0, 384, 156, 50, 0, 616, 2, 117, 40, 504, 0, 270, 32, 736, 44, 62, 0, 2944, 0, 66, 238, 186, 36, 1952, 0, 792, 52, 1652, 0, 975, 0, 78, 154, 960, 36, 2556, 0, 1276, 52
Offset: 1

Views

Author

Antti Karttunen, Jun 06 2021

Keywords

Crossrefs

Programs

Formula

a(n) = A342001(n) * A051709(n).
a(n) = A345049(n) + A345050(n).

A345049 a(n) = A173557(n) * A345001(n).

Original entry on oeis.org

-1, 0, -2, 3, -12, 10, -30, 11, 2, 20, -90, 40, -132, 30, 16, 31, -240, 48, -306, 104, 0, 50, -462, 112, -36, 60, 26, 192, -756, 344, -870, 79, -80, 80, -240, 158, -1260, 90, -144, 312, -1560, 636, -1722, 440, 216, 110, -2070, 280, -162, 152, -320, 600, -2652, 186, -880, 600, -432, 140, -3306, 1120, -3540, 150, 348, 191
Offset: 1

Views

Author

Antti Karttunen, Jun 06 2021

Keywords

Crossrefs

Programs

Formula

a(n) = A173557(n) * A345001(n).
a(n) = A345048(n) - A345050(n).

A345050 a(n) = A345048(n) - A345049(n).

Original entry on oeis.org

1, 0, 2, -1, 12, 0, 30, -2, 0, -6, 90, 24, 132, -12, 0, -3, 240, 15, 306, 16, 20, -24, 462, 108, 38, -30, -14, 0, 756, 276, 870, -4, 108, -42, 264, 152, 1260, -48, 176, 130, 1560, 348, 1722, -56, -60, -60, 2070, 336, 164, -35, 360, -96, 2652, 84, 912, 136, 476, -78, 3306, 1824, 3540, -84, -110, -5, 1380, 492, 4290
Offset: 1

Views

Author

Antti Karttunen, Jun 06 2021

Keywords

Crossrefs

Cf. A345048, A345049, A345051 (positions of zeros).

Programs

Formula

a(n) = A345048(n) - A345049(n).

A344994 Numbers k such that A173557(k) divides nonzero A051709(k).

Original entry on oeis.org

4, 6, 8, 12, 16, 24, 27, 28, 32, 42, 48, 54, 60, 64, 96, 108, 112, 120, 126, 128, 150, 168, 176, 192, 204, 216, 240, 243, 250, 256, 294, 312, 378, 384, 396, 432, 440, 448, 456, 460, 480, 486, 496, 500, 504, 512, 540, 588, 672, 700, 768, 774, 828, 840, 864, 888, 924, 960, 972, 1000, 1014, 1024, 1080, 1134, 1176, 1216
Offset: 1

Views

Author

Antti Karttunen, Jun 05 2021

Keywords

Crossrefs

Cf. A344995, A345054 (subsequences).
Cf. also A344754, A345051.

Programs

  • PARI
    A051709(n) = ((sigma(n) + eulerphi(n)) - (2*n));
    A173557(n) = factorback(apply(p -> p-1, factor(n)[, 1]));
    isA344994(n) = { my(u=A051709(n)); ((u>0)&&(0==(u%A173557(n)))); };

A345054 Odd numbers k such that A173557(k) divides nonzero A051709(k).

Original entry on oeis.org

27, 243, 1377, 2187, 3125, 19683, 28125, 55233, 68445, 177147, 195625, 203125, 239805, 253125, 453125, 823543, 907137, 1323297, 1378125, 1464561, 1594323, 1953125, 2278125, 3341637, 3572829, 5255361, 5877117, 9034497, 9819837, 11701053, 14348907, 17453125, 19460393, 20503125, 22209633, 26010621, 30074733, 44910045
Offset: 1

Views

Author

Antti Karttunen, Jun 06 2021

Keywords

Comments

Question: Are there any common terms with A345051?

Crossrefs

Odd terms in A344994.

Programs

  • PARI
    A051709(n) = ((sigma(n) + eulerphi(n)) - (2*n));
    A173557(n) = factorback(apply(p -> p-1, factor(n)[, 1]));
    isA345054(n) = if(!(n%2),0,my(u=A051709(n)); ((u>0)&&(0==(u%A173557(n)))));
Showing 1-6 of 6 results.