cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A345001 a(n) = sigma(n) + n' - 2n, where n' is the arithmetic derivative of n (A003415) and sigma is the sum of divisors (A000203).

Original entry on oeis.org

-1, 0, -1, 3, -3, 5, -5, 11, 1, 5, -9, 20, -11, 5, 2, 31, -15, 24, -17, 26, 0, 5, -21, 56, -9, 5, 13, 32, -27, 43, -29, 79, -4, 5, -10, 79, -35, 5, -6, 78, -39, 53, -41, 44, 27, 5, -45, 140, -27, 38, -10, 50, -51, 93, -22, 100, -12, 5, -57, 140, -59, 5, 29, 191, -28, 73, -65, 62, -16, 63, -69, 207, -71, 5, 29, 68
Offset: 1

Views

Author

Antti Karttunen, Jun 05 2021

Keywords

Comments

Coincides with A003415 only on perfect numbers (A000396).

Crossrefs

Programs

  • Mathematica
    A003415[n_] := If[n < 2, 0, Module[{f = FactorInteger[n]}, If[PrimeQ[n], 1, Total[n*f[[All, 2]]/f[[All, 1]]]]]];
    a[n_] := DivisorSigma[1, n] + A003415[n] - 2 n;
    Array[a, 80] (* Jean-François Alcover, Jun 12 2021 *)
  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A345001(n) = (sigma(n)+A003415(n)-(2*n));

Formula

a(n) = A003415(n) - A033879(n) = A000203(n) + A003415(n) - 2*n.
a(n) = A001065(n) + A168036(n).
a(n) = A344999(n) / A048250(n) = A345049(n) / A173557(n).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = A013661 + A136141 - 2 = 0.418090735898... . - Amiram Eldar, Dec 08 2023

A344998 a(n) = A342001(n) * A344753(n).

Original entry on oeis.org

0, 2, 2, 10, 2, 60, 2, 33, 14, 112, 2, 224, 2, 180, 144, 92, 2, 273, 2, 456, 220, 364, 2, 660, 22, 480, 66, 768, 2, 2604, 2, 235, 420, 760, 312, 910, 2, 924, 544, 1394, 2, 4428, 2, 1632, 780, 1300, 2, 1736, 30, 747, 840, 2184, 2, 1080, 544, 2392, 1012, 1984, 2, 8832, 2, 2244, 1258, 570, 684, 9516, 2, 3528, 1404, 8732
Offset: 1

Views

Author

Antti Karttunen, Jun 05 2021

Keywords

Comments

From Antti Karttunen, Jan 30 2022: (Start)
In addition to 2's that occur on primes, there are also other duplicates, for example, a(39) = a(55) = 544, a(51) = a(91) = 840, a(65) = a(77) = 684, a(343) = a(6241) = 318, a(95) = a(119) = a(143) = 1200 and a(155) = a(203) = a(299) = a(323) = 2664. Note how, apart from 343 = 7^3 and 6241 = 79^2, the duplicate positions in above cases are all squarefree semiprimes, and how the sum of the two prime factors in those cases are equal. E.g. 95 = 5*19, 119 = 7*17, 143 = 11*13, with 5+19 = 7+17 = 11+13 = 24.
Indeed, for squarefree semiprimes pq, A342001(pq) = A003415(pq) = p+q and A344753(pq) = 2*A001065(pq) = 2*(1+p+q), and therefore the product A342001(pq) * A344753(pq) depends only on the sum of p+q.
(End)

Crossrefs

Cf. A345003 [gives k for which a(k) = A344999(k)], A345004, A345005.

Programs

Formula

a(n) = A342001(n) * A344753(n).
a(n) = A344999(n) + A345043(n).

A344999 a(n) = A048250(n) * A345001(n).

Original entry on oeis.org

-1, 0, -4, 9, -18, 60, -40, 33, 4, 90, -108, 240, -154, 120, 48, 93, -270, 288, -340, 468, 0, 180, -504, 672, -54, 210, 52, 768, -810, 3096, -928, 237, -192, 270, -480, 948, -1330, 300, -336, 1404, -1638, 5088, -1804, 1584, 648, 360, -2160, 1680, -216, 684, -720, 2100, -2754, 1116, -1584, 2400, -960, 450, -3420, 10080
Offset: 1

Views

Author

Antti Karttunen, Jun 05 2021

Keywords

Crossrefs

Cf. A345003 [gives k for which a(k) = A344998(k)], A345004, A345005.

Programs

Formula

a(n) = A048250(n) * A345001(n).
a(n) = A344998(n) - A345043(n).

A345051 Numbers k such that A345048(k) is equal to A345049(k).

Original entry on oeis.org

2, 6, 9, 15, 28, 496, 625, 1225, 3993, 8128, 117649, 218491, 857375, 3788435, 4259571, 33550336, 69302975, 136410197, 200533921, 313742585, 603439225, 1516358753, 2563893625, 3326174929, 5655792025, 8589869056, 10214476341
Offset: 1

Views

Author

Antti Karttunen, Jun 06 2021

Keywords

Comments

Numbers k for which A342001(n) * A051709(n) = A173557(n) * A345001(n).
Conjecture: Sequence is a disjoint union of A000396 and A166374, i.e., there are no terms of any other kind.

Crossrefs

Positions of zeros in A345050.
Cf. A000396, A166374 (subsequences).
Cf. also A345003.

Programs

Extensions

a(21)-a(27) from Amiram Eldar, Dec 08 2023

A345005 Odd numbers whose arithmetic derivative (A003415) is equal to Dedekind psi (A001615) applied to the same number.

Original entry on oeis.org

81, 3375, 15625, 231525, 713097, 1058841, 1500625, 4348377, 5764801, 16891497, 163555875, 209548647, 239010993, 239160735, 254205875, 267651475, 405189675, 451699875, 958403475, 1050284375, 1213014231, 1501534375, 1695809375, 1809323971, 1942143291
Offset: 1

Views

Author

Antti Karttunen, Jun 05 2021

Keywords

Comments

Conjectured to be also the odd numbers k for which A344998(k) = A344999(k).

Crossrefs

Odd terms in A301939, but see also A345003.

Programs

  • PARI
    A001615(n) = if(1==n,n, my(f=factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1))); \\ After code in A001615
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    isA345005(n) = ((n%2)&&(A003415(n)==A001615(n)));

A301939 Integers whose arithmetic derivative is equal to their Dedekind function.

Original entry on oeis.org

8, 81, 108, 2500, 2700, 3375, 5292, 13068, 15625, 18252, 31212, 38988, 57132, 67228, 90828, 94500, 103788, 147852, 181548, 199692, 231525, 238572, 303372, 375948, 401868, 484812, 544428, 575532, 674028, 713097, 744012, 855468, 1016172, 1058841, 1101708, 1145772
Offset: 1

Views

Author

Paolo P. Lava, Mar 29 2018

Keywords

Comments

If n = Product_{k=1..j} p_k ^ i_k with each p_k prime, then psi(n) = n * Product_{k=1..j} (p_k + 1)/p_k and n' = n*Sum_{k=1..j} i_k/p_k.
Thus every number of the form p^(p+1), where p is prime, is in the sequence.
The sequence also contains every number of the form 108*p^2 where p is a prime > 3, or 108*p^3*(p+2) where p > 3 is in A001359. - Robert Israel, Mar 29 2018

Examples

			5292 = 2^2 * 3^3 * 7^2.
n' = 5292*(2/2 + 3/3 + 2/7) = 12096,
psi(n) = 5292*(1 + 1/2)*(1 + 1/3)*(1 + 1/7) = 12096.
		

Crossrefs

Cf. A001359, A001615, A003415, A166374, A342458. A345005 (gives the odd terms).
Subsequence of A345003.

Programs

  • Maple
    with(numtheory): P:=proc(n) local a,p; a:=ifactors(n)[2];
    if add(op(2,p)/op(1,p),p=a)=mul(1+1/op(1,p),p=a) then n; fi; end:
    seq(P(i),i=1..10^6);
  • Mathematica
    selQ[n_] := Module[{f = FactorInteger[n], p, e}, Product[{p, e} = pe; p^e + p^(e-1), {pe, f}] == Sum[{p, e} = pe; (n/p)e, {pe, f}]];
    Select[Range[10^6], selQ] (* Jean-François Alcover, Oct 16 2020 *)
  • PARI
    dpsi(f) = prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1));
    ader(n, f) = sum(i=1, #f~, n/f[i, 1]*f[i, 2]);
    isok(n) = my(f=factor(n)); dpsi(f) == ader(n, f); \\ Michel Marcus, Mar 29 2018

Formula

Solutions of the equation n' = psi(n).

A345004 Numbers k such that A345001(k)*A048250(k) is equal to A342001(k)*A344753(k) and A345001(n)/A342001(n) is an integer.

Original entry on oeis.org

6, 28, 496, 5292, 8128, 33550336
Offset: 1

Views

Author

Antti Karttunen, Jun 05 2021

Keywords

Comments

Equally, we may require that A344753(k)/A048250(k) is an integer, thus this is a subsequence of A344754.

Crossrefs

Intersection of A344754 and A345003.

Programs

A345043 a(n) = A344998(n) - A344999(n).

Original entry on oeis.org

1, 2, 6, 1, 20, 0, 42, 0, 10, 22, 110, -16, 156, 60, 96, -1, 272, -15, 342, -12, 220, 184, 506, -12, 76, 270, 14, 0, 812, -492, 930, -2, 612, 490, 792, -38, 1332, 624, 880, -10, 1640, -660, 1806, 48, 132, 940, 2162, 56, 246, 63, 1560, 84, 2756, -36, 2128, -8, 1972, 1534, 3422, -1248, 3660, 1764, 330, -3, 3036, -996, 4422
Offset: 1

Views

Author

Antti Karttunen, Jun 06 2021

Keywords

Comments

Each term a(n) seems to be a multiple of A033879(n). Factor (quotient) is negative at least for 16, 32, 48, 64, 72, 80, 96, 112, 128, 144, 160, 176, 192, 200, 208, 216, 224, 240, 243, 256, 272, 288, 304, 320, 324, 336, 352, 368, 384, 392, 400, 416, 432, 448, 464, 480, 486, ...

Crossrefs

Cf. A033879, A344998, A344999, A345003 (positions of zeros).

Formula

a(n) = A344998(n) - A344999(n).
Showing 1-8 of 8 results.