cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A344999 a(n) = A048250(n) * A345001(n).

Original entry on oeis.org

-1, 0, -4, 9, -18, 60, -40, 33, 4, 90, -108, 240, -154, 120, 48, 93, -270, 288, -340, 468, 0, 180, -504, 672, -54, 210, 52, 768, -810, 3096, -928, 237, -192, 270, -480, 948, -1330, 300, -336, 1404, -1638, 5088, -1804, 1584, 648, 360, -2160, 1680, -216, 684, -720, 2100, -2754, 1116, -1584, 2400, -960, 450, -3420, 10080
Offset: 1

Views

Author

Antti Karttunen, Jun 05 2021

Keywords

Crossrefs

Cf. A345003 [gives k for which a(k) = A344998(k)], A345004, A345005.

Programs

Formula

a(n) = A048250(n) * A345001(n).
a(n) = A344998(n) - A345043(n).

A345049 a(n) = A173557(n) * A345001(n).

Original entry on oeis.org

-1, 0, -2, 3, -12, 10, -30, 11, 2, 20, -90, 40, -132, 30, 16, 31, -240, 48, -306, 104, 0, 50, -462, 112, -36, 60, 26, 192, -756, 344, -870, 79, -80, 80, -240, 158, -1260, 90, -144, 312, -1560, 636, -1722, 440, 216, 110, -2070, 280, -162, 152, -320, 600, -2652, 186, -880, 600, -432, 140, -3306, 1120, -3540, 150, 348, 191
Offset: 1

Views

Author

Antti Karttunen, Jun 06 2021

Keywords

Crossrefs

Programs

Formula

a(n) = A173557(n) * A345001(n).
a(n) = A345048(n) - A345050(n).

A345004 Numbers k such that A345001(k)*A048250(k) is equal to A342001(k)*A344753(k) and A345001(n)/A342001(n) is an integer.

Original entry on oeis.org

6, 28, 496, 5292, 8128, 33550336
Offset: 1

Views

Author

Antti Karttunen, Jun 05 2021

Keywords

Comments

Equally, we may require that A344753(k)/A048250(k) is an integer, thus this is a subsequence of A344754.

Crossrefs

Intersection of A344754 and A345003.

Programs

A345002 Numbers k such that A345001(k)/A342001(k) is a positive natural number and a divisor of k.

Original entry on oeis.org

6, 28, 171, 496, 8128, 478800, 32317272, 33550336
Offset: 1

Views

Author

Antti Karttunen, Jun 05 2021

Keywords

Crossrefs

Cf. A000396 (subsequence), A003415, A003557, A342001, A345001.
Cf. also A344755.

Programs

  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A003557(n) = (n/factorback(factorint(n)[, 1]));
    isA345002(n) = if(1==n,0,my(d=A003415(n), s=sigma(n)+d-(n+n), r=s/(d/A003557(n))); (r>0&&1==denominator(r)&&!(n%r)));

A051709 a(n) = sigma(n) + phi(n) - 2n.

Original entry on oeis.org

0, 0, 0, 1, 0, 2, 0, 3, 1, 2, 0, 8, 0, 2, 2, 7, 0, 9, 0, 10, 2, 2, 0, 20, 1, 2, 4, 12, 0, 20, 0, 15, 2, 2, 2, 31, 0, 2, 2, 26, 0, 24, 0, 16, 12, 2, 0, 44, 1, 13, 2, 18, 0, 30, 2, 32, 2, 2, 0, 64, 0, 2, 14, 31, 2, 32, 0, 22, 2, 28, 0, 75, 0, 2, 14, 24, 2, 36, 0
Offset: 1

Views

Author

Keywords

Comments

Sigma is the sum of divisors (A000203), and phi is the Euler totient function (A000010). - Michael B. Porter, Jul 05 2013
Because sigma and phi are multiplicative functions, it is easy to show that (1) if a(n)=0, then n is prime or 1 and (2) if a(n)=2, then n is the product of two distinct prime numbers. Note that a(n) is the n-th term of the Dirichlet series whose generating function is given below. Using the generating function, it is theoretically possible to compute a(n). Hence a(n)=0 could be used as a primality test and a(n)=2 could be used as a test for membership in P2 (A006881). - T. D. Noe, Aug 01 2002
It appears that a(n) - A002033(n) = zeta(s-1) * (zeta(s) - 2 + 1/zeta(s)) + 1/(zeta(s)-2). - Eric Desbiaux, Jul 04 2013
a(n) = 1 if and only if n = prime(k)^2 (n is in A001248). It seems that a(n) = k has only finitely many solutions for k >= 3. - Jianing Song, Jun 27 2021

Examples

			a(5) = sigma(5) + phi(5) - 2*5 = 6 + 4 - 10 = 0.
		

Crossrefs

Cf. A278373 (range of this sequence), A056996 (numbers not present).
Cf. also A344753, A345001 (analogous sequences).

Programs

  • Mathematica
    Table[DivisorSigma[1,n]+EulerPhi[n]-2n,{n,80}] (* Harvey P. Dale, Apr 08 2015 *)
  • PARI
    a(n)=sigma(n)+eulerphi(n)-2*n \\ Charles R Greathouse IV, Jul 05 2013
    
  • PARI
    A051709(n) = -sumdiv(n,d,(dAntti Karttunen, Mar 02 2018

Formula

Dirichlet g.f.: zeta(s-1) * (zeta(s) - 2 + 1/zeta(s)). - T. D. Noe, Aug 01 2002
From Antti Karttunen, Mar 02 2018: (Start)
a(n) = A001065(n) - A051953(n). [Difference between the sum of proper divisors of n and their Moebius-transform.]
a(n) = -Sum_{d|n, dA008683(n/d)*A001065(d). (End)
Sum_{k=1..n} a(k) = (3/(Pi^2) + Pi^2/12 - 1) * n^2 + O(n*log(n)). - Amiram Eldar, Dec 03 2023

A344753 a(n) = sigma(n) + psi(n) - 2n = Sum_{d|n, d

Original entry on oeis.org

0, 2, 2, 5, 2, 12, 2, 11, 7, 16, 2, 28, 2, 20, 18, 23, 2, 39, 2, 38, 22, 28, 2, 60, 11, 32, 22, 48, 2, 84, 2, 47, 30, 40, 26, 91, 2, 44, 34, 82, 2, 108, 2, 68, 60, 52, 2, 124, 15, 83, 42, 78, 2, 120, 34, 104, 46, 64, 2, 192, 2, 68, 74, 95, 38, 156, 2, 98, 54, 148, 2, 195, 2, 80, 94, 108, 38, 180, 2, 170, 67, 88, 2
Offset: 1

Views

Author

Antti Karttunen, May 28 2021

Keywords

Comments

Sigma is the sum of divisors (A000203), and psi is Dedekind psi-function (A001615). Coincides with the latter only on perfect numbers (A000396).

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[d + If[SquareFreeQ[n/d], d, 0], {d, Most[Divisors[n]]}];
    Array[a, 100] (* Jean-François Alcover, Jun 12 2021 *)
  • PARI
    A344753(n) = sumdiv(n,d,(d
    				

Formula

a(n) = Sum_{d|n, dA008966(n/d) * d).
a(n) = A001065(n) + A306927(n).
a(n) = A001615(n) - A033879(n).
a(n) = A344705(n) + 2*A001065(n) - n.
For squarefree n, a(n) = 2*A001065(n).
a(n) = A344997(n) / A173557(n) = A344998(n) / A342001(n). - Antti Karttunen, Jun 06 2021
Sum_{k=1..n} a(k) = c * n^2 / 2 + O(n*log(n)), where c = Pi^2/6 + 15/Pi^2 - 2 = 1.164751... . - Amiram Eldar, Dec 08 2023

Extensions

New primary definition added by Antti Karttunen, Jun 06 2021

A345003 Numbers k for which A344998(k) = A344999(k).

Original entry on oeis.org

6, 8, 28, 81, 108, 496, 2500, 2700, 3375, 5292, 8128, 13068, 15625, 18252, 31212, 38988, 57132, 67228, 90828, 94500, 103788, 147852, 181548, 199692, 231525, 238572, 303372, 375948, 401868, 484812, 544428, 575532, 674028, 713097, 744012, 855468, 1016172, 1058841, 1101708, 1145772, 1236492, 1283148, 1379052, 1500625
Offset: 1

Views

Author

Antti Karttunen, Jun 05 2021

Keywords

Comments

Numbers k such that A345001(k)*A048250(k) is equal to A342001(k)*A344753(k).
Conjecture: Sequence is a disjoint union of A000396 and A301939.

Crossrefs

Positions of zeros in A345043.
Cf. A000396, A301939, A345004, A345005 (subsequences).
Cf. also A345051.

Programs

A345051 Numbers k such that A345048(k) is equal to A345049(k).

Original entry on oeis.org

2, 6, 9, 15, 28, 496, 625, 1225, 3993, 8128, 117649, 218491, 857375, 3788435, 4259571, 33550336, 69302975, 136410197, 200533921, 313742585, 603439225, 1516358753, 2563893625, 3326174929, 5655792025, 8589869056, 10214476341
Offset: 1

Views

Author

Antti Karttunen, Jun 06 2021

Keywords

Comments

Numbers k for which A342001(n) * A051709(n) = A173557(n) * A345001(n).
Conjecture: Sequence is a disjoint union of A000396 and A166374, i.e., there are no terms of any other kind.

Crossrefs

Positions of zeros in A345050.
Cf. A000396, A166374 (subsequences).
Cf. also A345003.

Programs

Extensions

a(21)-a(27) from Amiram Eldar, Dec 08 2023
Showing 1-8 of 8 results.