cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A345001 a(n) = sigma(n) + n' - 2n, where n' is the arithmetic derivative of n (A003415) and sigma is the sum of divisors (A000203).

Original entry on oeis.org

-1, 0, -1, 3, -3, 5, -5, 11, 1, 5, -9, 20, -11, 5, 2, 31, -15, 24, -17, 26, 0, 5, -21, 56, -9, 5, 13, 32, -27, 43, -29, 79, -4, 5, -10, 79, -35, 5, -6, 78, -39, 53, -41, 44, 27, 5, -45, 140, -27, 38, -10, 50, -51, 93, -22, 100, -12, 5, -57, 140, -59, 5, 29, 191, -28, 73, -65, 62, -16, 63, -69, 207, -71, 5, 29, 68
Offset: 1

Views

Author

Antti Karttunen, Jun 05 2021

Keywords

Comments

Coincides with A003415 only on perfect numbers (A000396).

Crossrefs

Programs

  • Mathematica
    A003415[n_] := If[n < 2, 0, Module[{f = FactorInteger[n]}, If[PrimeQ[n], 1, Total[n*f[[All, 2]]/f[[All, 1]]]]]];
    a[n_] := DivisorSigma[1, n] + A003415[n] - 2 n;
    Array[a, 80] (* Jean-François Alcover, Jun 12 2021 *)
  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A345001(n) = (sigma(n)+A003415(n)-(2*n));

Formula

a(n) = A003415(n) - A033879(n) = A000203(n) + A003415(n) - 2*n.
a(n) = A001065(n) + A168036(n).
a(n) = A344999(n) / A048250(n) = A345049(n) / A173557(n).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = A013661 + A136141 - 2 = 0.418090735898... . - Amiram Eldar, Dec 08 2023

A344995 Numbers k such that A051709(k)/A173557(k) is a positive natural number and a divisor of k.

Original entry on oeis.org

4, 6, 12, 28, 42, 312, 456, 496, 588, 828, 1080, 1216, 1242, 1377, 1560, 4560, 5964, 7320, 7480, 7584, 8128, 11400, 13728, 14784, 23760, 33462, 59400, 59520, 124020, 147840, 188600, 277648, 321000, 543552, 1288224, 1510272, 1596048, 1964544, 2038140, 3323736, 3611520, 3780672, 3909816, 6137440, 9034032, 10783890
Offset: 1

Views

Author

Antti Karttunen, Jun 05 2021

Keywords

Crossrefs

Subsequence of A344994.
Cf. also A344755, A345002.

Programs

  • PARI
    A051709(n) = ((sigma(n) + eulerphi(n)) - (2*n));
    A173557(n) = factorback(apply(p -> p-1, factor(n)[, 1]));
    isA344995(n) = { my(u=A051709(n),t=A173557(n),r=u/t); ((u>0)&&(1==denominator(r)&&!(n%r))); };
Showing 1-2 of 2 results.