cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A345001 a(n) = sigma(n) + n' - 2n, where n' is the arithmetic derivative of n (A003415) and sigma is the sum of divisors (A000203).

Original entry on oeis.org

-1, 0, -1, 3, -3, 5, -5, 11, 1, 5, -9, 20, -11, 5, 2, 31, -15, 24, -17, 26, 0, 5, -21, 56, -9, 5, 13, 32, -27, 43, -29, 79, -4, 5, -10, 79, -35, 5, -6, 78, -39, 53, -41, 44, 27, 5, -45, 140, -27, 38, -10, 50, -51, 93, -22, 100, -12, 5, -57, 140, -59, 5, 29, 191, -28, 73, -65, 62, -16, 63, -69, 207, -71, 5, 29, 68
Offset: 1

Views

Author

Antti Karttunen, Jun 05 2021

Keywords

Comments

Coincides with A003415 only on perfect numbers (A000396).

Crossrefs

Programs

  • Mathematica
    A003415[n_] := If[n < 2, 0, Module[{f = FactorInteger[n]}, If[PrimeQ[n], 1, Total[n*f[[All, 2]]/f[[All, 1]]]]]];
    a[n_] := DivisorSigma[1, n] + A003415[n] - 2 n;
    Array[a, 80] (* Jean-François Alcover, Jun 12 2021 *)
  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A345001(n) = (sigma(n)+A003415(n)-(2*n));

Formula

a(n) = A003415(n) - A033879(n) = A000203(n) + A003415(n) - 2*n.
a(n) = A001065(n) + A168036(n).
a(n) = A344999(n) / A048250(n) = A345049(n) / A173557(n).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = A013661 + A136141 - 2 = 0.418090735898... . - Amiram Eldar, Dec 08 2023

A345003 Numbers k for which A344998(k) = A344999(k).

Original entry on oeis.org

6, 8, 28, 81, 108, 496, 2500, 2700, 3375, 5292, 8128, 13068, 15625, 18252, 31212, 38988, 57132, 67228, 90828, 94500, 103788, 147852, 181548, 199692, 231525, 238572, 303372, 375948, 401868, 484812, 544428, 575532, 674028, 713097, 744012, 855468, 1016172, 1058841, 1101708, 1145772, 1236492, 1283148, 1379052, 1500625
Offset: 1

Views

Author

Antti Karttunen, Jun 05 2021

Keywords

Comments

Numbers k such that A345001(k)*A048250(k) is equal to A342001(k)*A344753(k).
Conjecture: Sequence is a disjoint union of A000396 and A301939.

Crossrefs

Positions of zeros in A345043.
Cf. A000396, A301939, A345004, A345005 (subsequences).
Cf. also A345051.

Programs

A344998 a(n) = A342001(n) * A344753(n).

Original entry on oeis.org

0, 2, 2, 10, 2, 60, 2, 33, 14, 112, 2, 224, 2, 180, 144, 92, 2, 273, 2, 456, 220, 364, 2, 660, 22, 480, 66, 768, 2, 2604, 2, 235, 420, 760, 312, 910, 2, 924, 544, 1394, 2, 4428, 2, 1632, 780, 1300, 2, 1736, 30, 747, 840, 2184, 2, 1080, 544, 2392, 1012, 1984, 2, 8832, 2, 2244, 1258, 570, 684, 9516, 2, 3528, 1404, 8732
Offset: 1

Views

Author

Antti Karttunen, Jun 05 2021

Keywords

Comments

From Antti Karttunen, Jan 30 2022: (Start)
In addition to 2's that occur on primes, there are also other duplicates, for example, a(39) = a(55) = 544, a(51) = a(91) = 840, a(65) = a(77) = 684, a(343) = a(6241) = 318, a(95) = a(119) = a(143) = 1200 and a(155) = a(203) = a(299) = a(323) = 2664. Note how, apart from 343 = 7^3 and 6241 = 79^2, the duplicate positions in above cases are all squarefree semiprimes, and how the sum of the two prime factors in those cases are equal. E.g. 95 = 5*19, 119 = 7*17, 143 = 11*13, with 5+19 = 7+17 = 11+13 = 24.
Indeed, for squarefree semiprimes pq, A342001(pq) = A003415(pq) = p+q and A344753(pq) = 2*A001065(pq) = 2*(1+p+q), and therefore the product A342001(pq) * A344753(pq) depends only on the sum of p+q.
(End)

Crossrefs

Cf. A345003 [gives k for which a(k) = A344999(k)], A345004, A345005.

Programs

Formula

a(n) = A342001(n) * A344753(n).
a(n) = A344999(n) + A345043(n).

A344999 a(n) = A048250(n) * A345001(n).

Original entry on oeis.org

-1, 0, -4, 9, -18, 60, -40, 33, 4, 90, -108, 240, -154, 120, 48, 93, -270, 288, -340, 468, 0, 180, -504, 672, -54, 210, 52, 768, -810, 3096, -928, 237, -192, 270, -480, 948, -1330, 300, -336, 1404, -1638, 5088, -1804, 1584, 648, 360, -2160, 1680, -216, 684, -720, 2100, -2754, 1116, -1584, 2400, -960, 450, -3420, 10080
Offset: 1

Views

Author

Antti Karttunen, Jun 05 2021

Keywords

Crossrefs

Cf. A345003 [gives k for which a(k) = A344998(k)], A345004, A345005.

Programs

Formula

a(n) = A048250(n) * A345001(n).
a(n) = A344998(n) - A345043(n).

A301939 Integers whose arithmetic derivative is equal to their Dedekind function.

Original entry on oeis.org

8, 81, 108, 2500, 2700, 3375, 5292, 13068, 15625, 18252, 31212, 38988, 57132, 67228, 90828, 94500, 103788, 147852, 181548, 199692, 231525, 238572, 303372, 375948, 401868, 484812, 544428, 575532, 674028, 713097, 744012, 855468, 1016172, 1058841, 1101708, 1145772
Offset: 1

Views

Author

Paolo P. Lava, Mar 29 2018

Keywords

Comments

If n = Product_{k=1..j} p_k ^ i_k with each p_k prime, then psi(n) = n * Product_{k=1..j} (p_k + 1)/p_k and n' = n*Sum_{k=1..j} i_k/p_k.
Thus every number of the form p^(p+1), where p is prime, is in the sequence.
The sequence also contains every number of the form 108*p^2 where p is a prime > 3, or 108*p^3*(p+2) where p > 3 is in A001359. - Robert Israel, Mar 29 2018

Examples

			5292 = 2^2 * 3^3 * 7^2.
n' = 5292*(2/2 + 3/3 + 2/7) = 12096,
psi(n) = 5292*(1 + 1/2)*(1 + 1/3)*(1 + 1/7) = 12096.
		

Crossrefs

Cf. A001359, A001615, A003415, A166374, A342458. A345005 (gives the odd terms).
Subsequence of A345003.

Programs

  • Maple
    with(numtheory): P:=proc(n) local a,p; a:=ifactors(n)[2];
    if add(op(2,p)/op(1,p),p=a)=mul(1+1/op(1,p),p=a) then n; fi; end:
    seq(P(i),i=1..10^6);
  • Mathematica
    selQ[n_] := Module[{f = FactorInteger[n], p, e}, Product[{p, e} = pe; p^e + p^(e-1), {pe, f}] == Sum[{p, e} = pe; (n/p)e, {pe, f}]];
    Select[Range[10^6], selQ] (* Jean-François Alcover, Oct 16 2020 *)
  • PARI
    dpsi(f) = prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1));
    ader(n, f) = sum(i=1, #f~, n/f[i, 1]*f[i, 2]);
    isok(n) = my(f=factor(n)); dpsi(f) == ader(n, f); \\ Michel Marcus, Mar 29 2018

Formula

Solutions of the equation n' = psi(n).
Showing 1-5 of 5 results.