cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A193680 Period 6 sequence 0,1,2,0,2,1.

Original entry on oeis.org

0, 1, 2, 0, 2, 1, 0, 1, 2, 0, 2, 1, 0, 1, 2, 0, 2, 1, 0, 1, 2, 0, 2, 1, 0, 1, 2, 0, 2, 1, 0, 1, 2, 0, 2, 1, 0, 1, 2, 0, 2, 1, 0, 1, 2, 0, 2, 1, 0, 1, 2, 0, 2, 1, 0, 1, 2, 0, 2, 1, 0, 1, 2, 0, 2, 1, 0, 1, 2, 0, 2, 1, 0, 1, 2, 0, 2, 1, 0, 1, 2, 0, 2, 1, 0, 1, 2, 0, 2, 1
Offset: 0

Views

Author

Wolfdieter Lang, Sep 30 2011

Keywords

Comments

This sequence can be extended periodically to negative values of n.
See a comment on A203571 where a k-family of 2k-periodic sequences P_k has been defined. The present sequence is P_3. - Wolfdieter Lang, Feb 02 2012

Examples

			a(8) = 8(mod 3) = 2 because (-1)^floor(8/3)= +1; 8\3 = 2 is even.
a(4) = (3-4)(mod 3) = 2, because (-1)^floor(4/3) is -1; 4\3 = 1 is odd.
		

Crossrefs

Cf. signed versions A112300, A186809.

Programs

Formula

a(n) = n (mod 3) if (-1)^floor(n/3)=+1 else (3 - n)(mod 3), n>=0. (-1)^floor(n/3) is the parity of the quotient floor(n/3), sometimes denoted by n\3.
O.g.f.: x*(1+2*x+2*x^3+x^4)/(1-x^6).
a(n) = 1-((-1)^(n+1)+cos(Pi*n/3)+3*cos(2*Pi*n/3))/3. - R. J. Mathar, Oct 07 2011, corrected by Vaclav Kotesovec, Feb 19 2023
a(n) = floor((71/364)*3^(n+1)) mod 3. - Hieronymus Fischer, Jan 04 2013
a(n) = floor((4007/333333)*10^(n+1)) mod 10. - Hieronymus Fischer, Jan 04 2013
From Amiram Eldar, Jan 01 2023: (Start)
Multiplicative with a(2^e) = 2, a(3^e) = 0, and a(p^e) = 1 for p >= 5.
Dirichlet g.f.: zeta(s)*(1+1/2^s-1/3^s-1/6^s). (End)

Extensions

Keyword:mult added by Andrew Howroyd, Jul 31 2018