cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A193692 Triangle T(n,k), n>=0, 1<=k<=C(n), read by rows: T(n,k) = number of elements >= k-th path in the poset of Dyck paths of semilength n ordered by inclusion.

Original entry on oeis.org

1, 1, 2, 1, 5, 3, 3, 2, 1, 14, 9, 10, 7, 4, 9, 6, 7, 5, 3, 4, 3, 2, 1, 42, 28, 32, 23, 14, 32, 22, 26, 19, 12, 17, 13, 9, 5, 28, 19, 22, 16, 10, 23, 16, 19, 14, 9, 13, 10, 7, 4, 14, 10, 12, 9, 6, 9, 7, 5, 3, 5, 4, 3, 2, 1, 132, 90, 104, 76, 48, 107, 75, 89, 66, 43, 62, 48, 34, 20, 104
Offset: 0

Views

Author

Alois P. Heinz, Aug 02 2011

Keywords

Examples

			Dyck paths of semilength n=3 listed in lexicographic order:
.                                               /\
.                  /\      /\        /\/\      /  \
.     /\/\/\    /\/  \    /  \/\    /    \    /    \
.     101010    101100    110010    110100    111000
. k = (1)       (2)       (3)       (4)       (5)
.
We have (1),(2),(3),(4),(5) >= (1); (2),(4),(5) >= (2); (3),(4),(5) >= (3);
(4),(5) >= (4); and (5) >= (5), thus row 3 = [5, 3, 3, 2, 1].
Triangle begins:
1;
1;
2,   1;
5,   3,  3,  2,  1;
14,  9, 10,  7,  4,  9,  6,  7,  5,  3,  4,  3, 2, 1;
42, 28, 32, 23, 14, 32, 22, 26, 19, 12, 17, 13, 9, 5, 28, 19, 22, 16, ...
		

Crossrefs

Row sums give A005700.
Lengths and first elements of rows give A000108.

Programs

  • Maple
    d:= proc(n, l) local m; m:= nops(l);
          `if`(n=m, [l], [seq(d(n, [l[], j])[],
                         j=`if`(m=0, 1, max(m+1, l[-1]))..n)])
        end:
    le:= proc(x, y) local i;
           for i to nops(x) do if x[i]>y[i] then return false fi od; true
         end:
    T:= proc(n) option remember; local l;
          l:= d(n, []);
          seq(add(`if`(le(l[j], l[i]), 1, 0), i=j..nops(l)), j=1..nops(l))
        end:
    seq(T(n), n=0..6);
  • Mathematica
    d[n_, l_] := d[n, l] = Module[{m}, m = Length[l]; If[n == m, {l}, Flatten[#, 1]& @ Table[d[n, Append[l, j]], {j, If[m == 0, 1, Max[m + 1, Last[l]]], n}]]]; le[x_, y_] := Module[{i}, For[i = 1, i <= Length[x], i++, If[x[[i]] > y[[i]] , Return[False]]]; True]; T[n_] := T[n] = Module[{l}, l = d[n, {}]; Table[Sum[If[le[l[[j]], l[[i]]], 1, 0], {i, j, Length[l]}], {j, 1, Length[l]}]]; Table[T[n], {n, 0, 6}] // Flatten (* Jean-François Alcover, Feb 01 2017, after Alois P. Heinz *)