A193728 Triangular array: the fusion of polynomial sequences P and Q given by p(n,x) = (x+2)^n and q(n,x) = (2*x+1)^n.
1, 2, 1, 8, 10, 3, 32, 64, 42, 9, 128, 352, 360, 162, 27, 512, 1792, 2496, 1728, 594, 81, 2048, 8704, 15360, 14400, 7560, 2106, 243, 8192, 40960, 87552, 103680, 73440, 31104, 7290, 729, 32768, 188416, 473088, 677376, 604800, 344736, 122472, 24786, 2187
Offset: 0
Examples
First six rows: 1; 2, 1; 8, 10, 3; 32, 64, 42, 9; 128, 352, 360, 162, 27; 512, 1792, 2496, 1728, 594, 81;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Programs
-
Magma
function T(n, k) // T = A193728 if k lt 0 or k gt n then return 0; elif n lt 2 then return n-k+1; else return 4*T(n-1, k) + 3*T(n-1, k-1); end if; end function; [T(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Nov 28 2023
-
Mathematica
(* First program *) z = 8; a = 1; b = 2; c = 2; d = 1; p[n_, x_] := (a*x + b)^n ; q[n_, x_] := (c*x + d)^n t[n_, k_] := Coefficient[p[n, x], x^k]; t[n_, 0] := p[n, x] /. x -> 0; w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, x_] := 1 g[n_] := CoefficientList[w[n, x], {x}] TableForm[Table[Reverse[g[n]], {n, -1, z}]] Flatten[Table[Reverse[g[n]], {n, -1, z}]] (* A193728 *) TableForm[Table[g[n], {n, -1, z}]] Flatten[Table[g[n], {n, -1, z}]] (* A193729 *) (* Second program *) T[n_, k_]:= T[n, k]= If[k<0 || k>n, 0, If[n<2, n-k+1, 4*T[n-1,k] + 3*T[n-1,k-1]]]; Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Nov 28 2023 *)
-
SageMath
def T(n, k): # T = A193728 if (k<0 or k>n): return 0 elif (n<2): return n-k+1 else: return 4*T(n-1, k) + 3*T(n-1, k-1) flatten([[T(n, k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Nov 28 2023
Formula
T(n,k) = 3*T(n-1,k-1) + 4*T(n-1,k) with T(0,0)=T(1,1)=1 and T(1,0)=2. - Philippe Deléham, Oct 05 2011
G.f.: (1-2*x-2*x*y)/(1-4*x-3*x*y). - R. J. Mathar, Aug 11 2015
From G. C. Greubel, Nov 28 2023: (Start)
T(n, n-k) = A193729(n, k).
T(n, 0) = A081294(n).
T(n, n-1) = 2*A081038(n-1).
T(n, n) = A133494(n).
Sum_{k=0..n} T(n, k) = (1/7)*(4*[n=0] + 3*A000420(n)).
Sum_{k=0..n} (-1)^k * T(n, k) = A000012(n).
Sum_{k=0..floor(n/2)} T(n-k, k) = (5*b(n) + 4*b(n-1))/14 + (2/3)*[n=0].
Sum_{k=0..floor(n/2)} (-1)^k * T(n-k, k) = A060816(n),
where b(n) = (2 + sqrt(7))^n + (2 - sqrt(7))^n. (End)
Comments