A193730 Triangular array: the fusion of polynomial sequences P and Q given by p(n,x) = (2x+1)^n and q(n,x) = (2x+1)^n.
1, 2, 1, 4, 8, 3, 8, 28, 30, 9, 16, 80, 144, 108, 27, 32, 208, 528, 648, 378, 81, 64, 512, 1680, 2880, 2700, 1296, 243, 128, 1216, 4896, 10800, 14040, 10692, 4374, 729, 256, 2816, 13440, 36288, 60480, 63504, 40824, 14580, 2187, 512, 6400, 35328, 112896, 229824, 308448, 272160, 151632, 48114, 6561
Offset: 0
Examples
First six rows: 1; 2, 1; 4, 8, 3; 8, 28, 30, 9; 16, 80, 144, 108, 27; 32, 208, 528, 648, 378, 81;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Programs
-
Magma
function T(n, k) // T = A193730 if k lt 0 or k gt n then return 0; elif n lt 2 then return n-k+1; else return 2*T(n-1, k) + 3*T(n-1, k-1); end if; end function; [T(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Nov 20 2023
-
Mathematica
(* First program *) z = 8; a = 2; b = 1; c = 2; d = 1; p[n_, x_] := (a*x + b)^n ; q[n_, x_] := (c*x + d)^n t[n_, k_] := Coefficient[p[n, x], x^k]; t[n_, 0] := p[n, x] /. x -> 0; w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, x_] := 1 g[n_] := CoefficientList[w[n, x], {x}] TableForm[Table[Reverse[g[n]], {n, -1, z}]] Flatten[Table[Reverse[g[n]], {n, -1, z}]] (* A193730 *) TableForm[Table[g[n], {n, -1, z}]] Flatten[Table[g[n], {n, -1, z}]] (* A193731 *) (* Second program *) T[n_, k_]:= T[n, k]= If[k<0 || k>n, 0, If[n<2, n-k+1, 2*T[n-1, k] + 3*T[n-1, k-1]]]; Table[T[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Nov 20 2023 *)
-
SageMath
def T(n, k): # T = A193730 if (k<0 or k>n): return 0 elif (n<2): return n-k+1 else: return 2*T(n-1, k) + 3*T(n-1, k-1) flatten([[T(n, k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Nov 20 2023
Formula
T(n,k) = 3*T(n-1,k-1) + 2*T(n-1,k) with T(0,0)=T(1,1)=1 and T(1,0)=2. - Philippe Deléham, Oct 05 2011
G.f.: (1-2*x*y)/(1-2*x-3*x*y). - R. J. Mathar, Aug 11 2015
From G. C. Greubel, Nov 20 2023: (Start)
T(n, 0) = A000079(n).
T(n, 1) = A130129(n-1).
T(n, n) = A133494(n).
T(n, n-1) = A199923(n).
Sum_{k=0..n} T(n, k) = A005053(n).
Sum_{k=0..n} (-1)^k * T(n, k) = A165326(n). (End)
Comments